Металлы в живых организмах - [17]
Полученный глюкозо-6-фосфат химически более активен, чем исходная глюкоза, — в этом, собственно, и заключается биохимический смысл фосфорилирования — превращения углевода в его фосфорильное производное. Затем происходит перегруппировка атомов, и получается уже не глюкозо-, а фруктозо-6-фосфат; далее следует вторичное фосфорилирование, и образуется фруктозо-1,6-дифосфат. Снова действует фермент (альдолаза), и цепочка из шести углеродных атомов фруктозодифосфата разрывается. Получается два трехуглеродных соединения: 3-фосфоглицеринальдегид и фосфодиоксиацетон. Эти родственные триозофосфаты могут взаимопревращаться. Фосфоглицеринальдегид подвергается действию фермента (дегидрогеназы) и кофермента — окислителя, сокращенное название которого НАД, а полное — никотин-амидадениндинуклеотид. НАД присоединяет к себе от окисляемого вещества (т. е. от фосфоглицеринальдегида) ион водорода, несущий отрицательный заряд, так называемый гидридный ион Н>-. (Столь необычное состояние иона водорода характерно для гидридов некоторых металлов, например калия или натрия.) Молекула НАД действует в форме положительного иона НАД+ и переходит в нейтральное состояние. Второй ион водорода отщепляется от фосфоглицеринальдегида в виде Н+ и поступает в окружающую среду.
В реакцию вступает неорганический фосфат, и в результате образуется богатая энергией 1,3-дифосфоглицериновая кислота (ее соль — 1,3-дифосфоглицерат).
Отдавая один фосфорильный остаток АДФ и превращая ее в АТФ, эта кислота сама переходит в 3-, а затем 2-фосфоглицериновую кислоту. Последняя теряет воду (дегидратация) и превращается в фосфоенолпировиноградную кислоту и ее соль — фосфоенолпируват, которые восстанавливаются с помощью НАД*Н до молочной кислоты (точнее — лактата, так как получается не свободная кислота, а ее соль, имеющая такое название).
Несмотря на разнообразие стадий гликолиза, реакции совершаются согласованно во всех его частях благодаря действию специфических катализаторов — ферментов и ионов металлов, стимулирующих работу ферментативных механизмов. Ионы магния способствуют образованию фосфата глюкозы и дифосфата фруктозы. Ионы кальция и калия облегчают восстановление фруктозодифосфата до фосфоглицеринового альдегида. Ионы калия и магния облегчают образование пировиноградной кислоты. Образование АТФ из АДФ также ускоряется ионами магния.
На пирувате и лактате дело, однако, не кончается. Лактат является конечным продуктом лишь в отсутствие кислорода, в анаэробных условиях (например, в мышцах человека). При большой мышечной нагрузке он поступает с током крови в печень, где частично окисляется до диоксида углерода и большей частью до пирувата.
Клетка располагает еще одним замечательным аппаратом, который позволяет извлекать из углеводов гораздо больше энергии (сжигая их до конца — до СО>2 и Н>2О), чем это можно сделать с помощью только гликолиза. Этот аппарат — цикл Кребса, сопряженный с дыхательной цепью.
Рис. 7. Упрощенная схема цикла Кребса (цикла трикарбоновых кислот). Указаны ионы металлов, ускоряющие отдельные реакции цикла
Цикл Кребса называется так по имени ученого, открывшего его. Другое его название — цикл трикарбоновых кислот, которые играют здесь важную роль (рис. 7). В этот цикл вовлекается пировиноградная кислота, теряющая сначала водород и СO>2; реакция имеет сложный характер и связана с участием системы ферментов. При этом от молекулы пировиноградной кислоты остается группа СН>3СО — ацетил[4]. Ацетил реагирует со щавелевоуксусной кислотой (четырехуглеродной двухосновной карбоновой кислотой), образуя лимонную (шестиуглеродную трехосновную) кислоту. С этого, собственно, и начинается работа цикла. Затем следуют реакции образования цисаконитовой и изолимонной кислот, в молекулах которых имеется по шести атомов углеродов. Под влиянием фермента дегидрогеназы от изолимонной кислоты отщепляются два атома водорода, в результате чего она превращается в щавелевоянтарную кислоту (на схеме не показана), которая под действием декарбоксилазы отщепляет углекислый газ; при этом число атомов углерода в продукте реакции — кетоглутаровой кислоте — становится равным пяти. Кетоглутаровая кислота интересна тем, что в том месте, где она образуется, цикл пересекается с еще одним путем метаболизма. Так, при ее взаимодействии с аммиаком или ионами аммония образуется глутаминовая кислота, которая в дальнейших реакциях может превращаться и в другие аминокислоты; таким путем, в частности, в корневой системе растений аммиак вовлекается в синтез аминокислот.
Кофермент А состоит из аденин-нуклеотида, двух остатков фосфорной кислоты, пантотеновой кислоты (пант. к.) и аминоэтантиола
Продолжим наше движение по циклу. Кетоглутаровая кислота превращается в янтарную (имеющую четыре атома углерода), теряя углекислый газ и два атома водорода; при этом одна молекула воды входит в цикл. Далее следуют реакции превращения янтарной кислоты в фумаровую, фумаровой — в яблочную и яблочной — в щавелевоуксусную. Как видно из рисунка 7, все эти превращения сопровождаются отщеплением двух пар атомов водорода и присоединением молекулы воды. Щавелевоуксусная кислота также может быть источником образования аминокислоты (аспарагиновой), однако ее основная функция заключается в том, что она в форме, содержащей двойную связь (енол), вступает в реакцию с остатком уксусной кислоты СН3СО (в составе ацетил-КоА), снова запуская цикл.
История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
О чем рассказал бы вам ветеринарный врач, если бы вы оказались с ним в неформальной обстановке за рюмочкой крепкого не чая? Если вы восхищаетесь необыкновенными рассказами и вкусным ироничным слогом Джеральда Даррелла, обожаете невыдуманные истории из жизни людей и животных, хотите заглянуть за кулисы одной из самых непростых и важных профессий – ветеринарного врача, – эта книга точно для вас! Веселые и грустные рассказы Алексея Анатольевича Калиновского о людях, с которыми ему довелось встречаться в жизни, о животных, которых ему посчастливилось лечить, и о невероятных ситуациях, которые случались в его ветеринарной практике, захватывают с первых строк и погружают в атмосферу доверительной беседы со старым другом! В формате PDF A4 сохранен издательский макет.
Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.