Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - [9]
Изначально Галилей предполагал, что вертикальное и горизонтальное направления движения объекта вниз по наклонной плоскости не зависят друг от друга, и их можно рассматривать отдельно. Это означало бы, что законы физики для движения в вертикальном направлении (которое интересовало его больше всего) одинаковы для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.
К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости[19], увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.
Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:
— более низкая высота (от отправной точки) означает, что объект перемещается быстрее — это значит, что его наивысшая скорость будет достигнута в самой низкой точке;
— чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.
Давайте посмотрим на другую версию эксперимента Галилео с маятником.
Повторное рассмотрение маятника
В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену, — маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения[20].
Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.
Но тогда Галилео добавил к оригинальному эксперименту поворот. Теперь вообразите те же условия, за исключением того, что на этот раз мы забиваем гвоздь в стену таким образом, что струна неизбежно столкнется с ним, поскольку маятник качается справа налево (рис. 2.4). Хотя колебание маятника изменились из-за гвоздя, мы опять понимаем, что начальная высота и конечная равны. Однако что будет, если мы поменяем положение гвоздя? Это не имеет значения. Нить просто зацепится за гвоздь, колебание изменится, и маятник достигнет своей конечной высоты, которая (как и прежде) совпадет с начальной высотой.
Рис. 2.4. Как и прежде, маятник перемещается направо, покидая точку покоя (самую низкую точку, в которой он висит вертикально), а затем поднимается на прежнюю высоту. При движении справа налево маятник цепляется за гвоздь, который вынуждает его изменить путь. Независимо от этого, маятник все равно достигает конечной высоты, которая совпадает с начальной.
Давайте рассмотрим еще одну, последнюю возможность: что если гвоздь лишает маятник возможности изменять свое колебание таким образом, чтобы он мог на самом деле достигнуть конечной высоты, которая равна начальной? В этом случае маятник просто продолжает двигаться, поскольку он оборачивается вокруг гвоздя.
Когда мы говорили о маятнике прежде, мы узнали, что, поскольку он качается вниз, удаляясь от начальной высоты, его скорость увеличивается. Другими словами, уменьшение в высоте приводит к увеличению скорости. Теперь мы видим, что, поскольку маятник продолжает движение на подъеме, его конечная высота (или максимальная высота) совпадет с начальной. Как связаны эти концепции? Оказывается, взаимодействие между высотой и скоростью четко уравновешено. Мы выяснили, что сила тяготения, действующая на объект на данной высоте, передает ему потенциальную энергию, но мы никогда не говорили о ее коллеге, имя которой кинетическая энергия. Тогда как потенциальная энергия — «сохраненная энергия», кинетическая энергия — «энергия движения», которая придает объекту его скорость.
Ранее мы обсуждали, как работа сохраняется таким образом, что уменьшение в необходимой силе приводит к увеличению расстояния, на которое она прилагается, при использовании простой машины. Тем не менее общая работа, затрачиваемая на выполнение задачи, сохраняется.
Принципы сохранения кинетической и потенциальной энергии похожи. В случае маятника это означает, что, поскольку высота уменьшается, потеря потенциальной энергии компенсируется увеличением кинетической энергии, что означает увеличение скорости. И наоборот: в то время как маятник продолжает движение на подъем, он становится все ближе и ближе к своей начальной высоте (но с другой стороны), и, соответственно, уменьшается кинетическая энергия, маятник замедляется и останавливается на мгновение на финальной высоте (равной той, с которой он начал движение), перед тем как упасть обратно вниз. Поэтому маятник двигается с самой высокой скоростью в самой низкой точке колебания, в то время как его скорость ниже всего в самом верху колебания. Этот обмен между потенциальной энергией и кинетической энергией не уникален для маятника; это относится ко всем системам (наклонной плоскости, объектам в свободном падении и другим) и прекрасно сбалансировано, когда отсутствует трение
Статья 1988–1989 гг. о ленинградской ветви фантастической «новой волны» — о писателях семинара Б. Стругацкого.Имеет историческое значение.
Драгоценные и цветные камни – изумруды, алмазы, сапфиры, агаты, жемчуга, янтарь, аметисты издавна привлекали человека своей красотой и необычностью.Об особенностях самоцветов, цветных и поделочных камней, об их диагностике и сборе, о художественной обработке камня от разрезания до полировки, об искусстве мозаики, глиптики, инкрустации, гравирования, о камнерезном искусстве, об огранке и изготовлении кабошонов и иных изделий, об исторических алмазах, о символическом, магическом, астрологическом значении камней-самоцветов и их целительных свойствах, об амулетах и талисманах, а также о гороскопах драгоценных камней и о многом другом узнает читатель из этой книги.Легенды и поверья приведены по массовой литературе.Для широкого круга читателей, а также для любителей камня и природы.
Его имя мало кто знает, хотя весьма популярны и прославлены имена Винера и Берталанфи, развивавших его идеи.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Впервые книга "Машины создания" была издана в твёрдой обложке издательством Энкор Букс (Anchor Books) в 1986 году, а в мягкой обложке – в 1987. Интернет-версия переиздана и адаптирована Расселом Вайтейкером с разрешения владельца авторских прав. Подлинник на английском языке находится на сайте Института предвиденияпо адресу: http://www.foresight.org/EOC/.
Невероятные случаи происходят с нами постоянно, их нужно только собрать и разложить, что называется, по полочкам. Другое дело — верить или не верить в эти истории. Какие-то из них мы принимаем безоговорочно, о других можем сказать: «Этого не может быть, потому что...» Конец фразы известен. А есть и такие истории, которые, когда с ними познакомишься, вызывают только вопросы: а дальше что? Где продолжение? Необыкновенные истории реальны, реальны настолько, что мы даже себе представить не можем — вот увидите.
Wall Street Journal назвал эту книгу одной из пяти научных работ, обязательных к прочтению. Ученые, преподаватели, исследователи и читатели говорят о ней как о революционной, переворачивающей представления о мозге. В нашей культуре принято относиться к мозгу как к главному органу, который формирует нашу личность, отвечает за успехи и неудачи, за все, что мы делаем, и все, что с нами происходит. Мы приравниваем мозг к компьютеру, считая его «главным» в нашей жизни. Нейрофизиолог и биоинженер Алан Джасанов предлагает новый взгляд на роль мозга и рассказывает о том, какие именно факторы окружающей среды и процессы человеческого тела формируют личность и делают нас теми, кто мы есть.
Эта книга не только о том, как устроена Вселенная, хотя, казалось бы, разговоров как раз на эту тему следует ожидать от увлеченного астрофизика. Все дело в том, что поклонники и противники Нила Деграсса Тайсона в своих письмах спрашивают его не только об инопланетной жизни, звездных системах, путешествиях в пространстве, параллельных вселенных и прочих космических штучках. Они хотят знать, как относиться к теории эволюции, как построить вечный двигатель, когда ждать конца света, как пережить утрату близкого человека, изменить свою жизнь… И автор осторожно делится своим мнением на этот счет, обнаруживая не только широкий кругозор и интеллигентное чувство юмора – о котором всем известно, – но также и мудрость, и чуткость, и простоту.
Темное вещество, гравитация, возможность межгалактических полетов и Теория Большого взрыва… Изучение тайн Вселенной подобно чтению захватывающего романа. Но только если вы хорошо понимаете физику, знаете, что скрывается за всеми сложными терминами и определениями. В самых головоломных вопросах науки вам поможет разобраться Нил Деграсс Тайсон – один из самых авторитетных и в то же время остроумных астрофизиков нашего времени. Он обладает особым даром рассказывать о сложнейших научных теориях понятно, интересно и с юмором. Новая книга Нила Тайсона – это очередное захватывающее путешествие в мир современной науки.
Таблица Менделеева занимает в нашем воображении такое же прочное место, как и алфавит, календарь и знаки зодиака. Но сами химические элементы, помимо нескольких самых распространенных: железа, углерода, меди, золота, – покрыты завесой тайны. По большей части мы не знаем, как они выглядят, в каком виде встречаются в природе, почему так названы и чем полезны для нас. Добро пожаловать на головокружительную экскурсию по страницам истории и литературы, науки и искусства! «Научные сказки» познакомят вас с железом, которое падает с неба, и расскажут о скорбном пути неонового света.