Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - [9]

Шрифт
Интервал

, а первый только по вертикали, так как просто падает на землю.

Изначально Галилей предполагал, что вертикальное и горизонтальное направления движения объекта вниз по наклонной плоскости не зависят друг от друга, и их можно рассматривать отдельно. Это означало бы, что законы физики для движения в вертикальном направлении (которое интересовало его больше всего) одинаковы для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.

К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости[19], увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.

Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:

— более низкая высота (от отправной точки) означает, что объект перемещается быстрее — это значит, что его наивысшая скорость будет достигнута в самой низкой точке;

— чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.

Давайте посмотрим на другую версию эксперимента Галилео с маятником.

Повторное рассмотрение маятника

В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену, — маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения[20].

Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.

Но тогда Галилео добавил к оригинальному эксперименту поворот. Теперь вообразите те же условия, за исключением того, что на этот раз мы забиваем гвоздь в стену таким образом, что струна неизбежно столкнется с ним, поскольку маятник качается справа налево (рис. 2.4). Хотя колебание маятника изменились из-за гвоздя, мы опять понимаем, что начальная высота и конечная равны. Однако что будет, если мы поменяем положение гвоздя? Это не имеет значения. Нить просто зацепится за гвоздь, колебание изменится, и маятник достигнет своей конечной высоты, которая (как и прежде) совпадет с начальной высотой.



Рис. 2.4. Как и прежде, маятник перемещается направо, покидая точку покоя (самую низкую точку, в которой он висит вертикально), а затем поднимается на прежнюю высоту. При движении справа налево маятник цепляется за гвоздь, который вынуждает его изменить путь. Независимо от этого, маятник все равно достигает конечной высоты, которая совпадает с начальной.


Давайте рассмотрим еще одну, последнюю возможность: что если гвоздь лишает маятник возможности изменять свое колебание таким образом, чтобы он мог на самом деле достигнуть конечной высоты, которая равна начальной? В этом случае маятник просто продолжает двигаться, поскольку он оборачивается вокруг гвоздя.

Когда мы говорили о маятнике прежде, мы узнали, что, поскольку он качается вниз, удаляясь от начальной высоты, его скорость увеличивается. Другими словами, уменьшение в высоте приводит к увеличению скорости. Теперь мы видим, что, поскольку маятник продолжает движение на подъеме, его конечная высота (или максимальная высота) совпадет с начальной. Как связаны эти концепции? Оказывается, взаимодействие между высотой и скоростью четко уравновешено. Мы выяснили, что сила тяготения, действующая на объект на данной высоте, передает ему потенциальную энергию, но мы никогда не говорили о ее коллеге, имя которой кинетическая энергия. Тогда как потенциальная энергия — «сохраненная энергия», кинетическая энергия — «энергия движения», которая придает объекту его скорость.

Ранее мы обсуждали, как работа сохраняется таким образом, что уменьшение в необходимой силе приводит к увеличению расстояния, на которое она прилагается, при использовании простой машины. Тем не менее общая работа, затрачиваемая на выполнение задачи, сохраняется.

Принципы сохранения кинетической и потенциальной энергии похожи. В случае маятника это означает, что, поскольку высота уменьшается, потеря потенциальной энергии компенсируется увеличением кинетической энергии, что означает увеличение скорости. И наоборот: в то время как маятник продолжает движение на подъем, он становится все ближе и ближе к своей начальной высоте (но с другой стороны), и, соответственно, уменьшается кинетическая энергия, маятник замедляется и останавливается на мгновение на финальной высоте (равной той, с которой он начал движение), перед тем как упасть обратно вниз. Поэтому маятник двигается с самой высокой скоростью в самой низкой точке колебания, в то время как его скорость ниже всего в самом верху колебания. Этот обмен между потенциальной энергией и кинетической энергией не уникален для маятника; это относится ко всем системам (наклонной плоскости, объектам в свободном падении и другим) и прекрасно сбалансировано, когда отсутствует трение


Рекомендуем почитать
Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Бумага. О самом хрупком и вечном материале

Попробуйте представить мир без бумаги. Что нам останется? Да почти ничего. Бумага с нами везде. Книги, письма, дневники, а еще картонные подставки под пиво, свидетельства о рождении, настольные игры и визитные карточки, фотографии, билеты, чайные пакетики. Мы — люди бумаги. Но эпоха бумаги подходит к концу. Электронные книги и билеты заменяют бумажные, архивы оцифровывают. Мы вступаем в мир без бумаги, но Иэн Сэнсом рассказывает об этом самом парадоксальном из созданных человеком материале и доказывает, что в том или ином виде он всегда будет с нами.


Десять самых красивых экспериментов в истории науки

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.


Безопасность жизнедеятельности. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать. Пособие предназначено для студентов высших и средних образовательных учреждений.



Мозг: прошлое и будущее

Wall Street Journal назвал эту книгу одной из пяти научных работ, обязательных к прочтению. Ученые, преподаватели, исследователи и читатели говорят о ней как о революционной, переворачивающей представления о мозге. В нашей культуре принято относиться к мозгу как к главному органу, который формирует нашу личность, отвечает за успехи и неудачи, за все, что мы делаем, и все, что с нами происходит. Мы приравниваем мозг к компьютеру, считая его «главным» в нашей жизни. Нейрофизиолог и биоинженер Алан Джасанов предлагает новый взгляд на роль мозга и рассказывает о том, какие именно факторы окружающей среды и процессы человеческого тела формируют личность и делают нас теми, кто мы есть.


Научные сказки периодической таблицы. Занимательная история химических элементов от мышьяка до цинка

Таблица Менделеева занимает в нашем воображении такое же прочное место, как и алфавит, календарь и знаки зодиака. Но сами химические элементы, помимо нескольких самых распространенных: железа, углерода, меди, золота, – покрыты завесой тайны. По большей части мы не знаем, как они выглядят, в каком виде встречаются в природе, почему так названы и чем полезны для нас. Добро пожаловать на головокружительную экскурсию по страницам истории и литературы, науки и искусства! «Научные сказки» познакомят вас с железом, которое падает с неба, и расскажут о скорбном пути неонового света.


Письма астрофизика

Эта книга не только о том, как устроена Вселенная, хотя, казалось бы, разговоров как раз на эту тему следует ожидать от увлеченного астрофизика. Все дело в том, что поклонники и противники Нила Деграсса Тайсона в своих письмах спрашивают его не только об инопланетной жизни, звездных системах, путешествиях в пространстве, параллельных вселенных и прочих космических штучках. Они хотят знать, как относиться к теории эволюции, как построить вечный двигатель, когда ждать конца света, как пережить утрату близкого человека, изменить свою жизнь… И автор осторожно делится своим мнением на этот счет, обнаруживая не только широкий кругозор и интеллигентное чувство юмора – о котором всем известно, – но также и мудрость, и чуткость, и простоту.


Астрофизика с космической скоростью, или Великие тайны Вселенной для тех, кому некогда

Темное вещество, гравитация, возможность межгалактических полетов и Теория Большого взрыва… Изучение тайн Вселенной подобно чтению захватывающего романа. Но только если вы хорошо понимаете физику, знаете, что скрывается за всеми сложными терминами и определениями. В самых головоломных вопросах науки вам поможет разобраться Нил Деграсс Тайсон – один из самых авторитетных и в то же время остроумных астрофизиков нашего времени. Он обладает особым даром рассказывать о сложнейших научных теориях понятно, интересно и с юмором. Новая книга Нила Тайсона – это очередное захватывающее путешествие в мир современной науки.