Механика времени - [5]
Фундаментальной закономерностью механики времени как всеобщей истории числа является Теорема Ферма-Эйлера о представлении простых чисел в виде суммы двух квадратов. Условием возможности математического анализа как имманентной теории числа является физическая (численностная) реальность того, что квадраты некоторых чисел можно разложить в сумму двух квадратов. Можно описать все целочисленные решения уравнения x2+y2z2. Это было сделано Диофантом, греческим математиком, жившим (вероятно) в III веке нашей эры, во второй книге его трактата "Арифметика". На полях около решения Диофанта Ферма написал: "Нельзя разложить куб на два куба, ни квадрато-квадрат (т. е. четвертую степень числа) на два квадрато-квадрата, ни вообще никакую степень выше квадрата и до бесконечности нельзя разложить на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки". Иначе говоря, уравнение xn+ynzn при натуральном n2 в целых числах неразрешимо. В бумагах Ферма было найдено доказательство этого утверждения для n4. Для n3 теорему Ферма доказал Эйлер в 1768 году. Математики не заметили, не замечая физическое существование числа, что вторая теорема Ферма "Для того чтобы нечетное простое число было представимо в виде суммы двух квадратов, необходимо и достаточно, чтобы оно при делении на 4 давало в остатке 1" является доказательством Великой теоремы при наличии одного априорного положения. Ферма приоткрывает замысел доказательства в целом, когда пишет, что "основная идея доказательства состоит в методе спуска, позволяющем из предположения, что для какого-то простого числа вида 4n+1 заключение теоремы неверно, получить, что оно неверно и для меньшего числа того же и т. д., пока мы не доберемся до числа 5, когда окончательно придем к противоречию". "Удивительная суть" всеобщего доказательства Ферма состоит в открытии того априорного положения, для выражения которого ему категорически не могло хватить математического языка, но с избытком хватило видения, — априорного положения о физическом (истинном) существе единицы, о необходимости и достаточности формулы единицы как всеобщей формулы математики, формулы всеобщей теории чисел.
Единица есть множество простых чисел. Физическая реальность единицы доказывается существованием математических констант "-1 (представляет арифметику), i — (алгебру),
— (геометрию) и e — (анализ)" (акад. А. Н. Крылов). Язык науки есть модель единицы, которая, в свою очередь, есть модель языка в чистом виде. -1 представляет грамматику, i — синтаксис,
— семантику и e — семиотику. Так называемый "искусственный интеллект" имеет формулу единицы — формализует смысл, образуя лексический уровень языка из исчисления языковых моделей. С другой стороны, формула единицы есть истинный смысл, который кроется за метафорой "всеобщей теорией поля", неполным формализмом всеобщей теории числа. Взаимодействие в пространстве числового ряда не нуждается в существовании особого (нечислового) "физического агента", "переносящего" взаимодействие.
Архимед определил границы для числа, доказав, что
3
3
.
Высшая творческая радость Архимеда состояла в открытии физической природы единицы: "Объем шара радиуса 1 равен 4/3
"Королевская теорема математиков о том, что "правильный семнадцатиугольник может быть построен с помощью циркуля и линейки" должна быть дополнена единицей: "правильный восемнадцатиугольник может быть построен с помощью циркуля и линейки". Таково решение проблемы квадратуры круга, образующее единый постулат новой геометрии, геометрической фигурой которого является "лента мебиуса".
Математикам известно, что Теорема Ферма-Эйлера "красиво доказывается", если использовать теорию делимости целых комплексных чисел n+mi, n, m — целые. Это исток современного этапа развития квантовой механики, работы с "мнимыми объектами".
Принцип формализации есть принцип "дополнительности единицы" (тождественный принципу включенного третьего как принципу отглагольной связки "есть"), есть также принцип соответствия цифры числу — и является руководящим принципом преобразования квантовой механики в механику времени. Принцип единицы вносит определенность в квантово-механическую ситуацию неопределенности, что делает возможным получение экспериментальных данных об одних физических величинах, описывающих микрообъект, "избегающее неизбежности" изменения таких данных о величинах, дополнительных к первым. Так "взаимно дополнительные" величины (координата и импульс частицы) дополняет число частицы как определенность соотношения. Дефиниция есть фундаментальная процедура механики времени, обеспечивающая переход от имманентного исчисления (математического анализа) к трансцендентальному исчислению (синтетическому исчислению) на основе представления о трансцендентном исчислении. Каждому числу, независимо от его числовой природы, необходимо "поставить в соответствие" цифру, формализм которой связан с "простым значением" числа сообразно закону простых чисел — так переформулируется принцип Де Бройля в механике времени. Применение Бором идеи квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда, есть подход к осознанию истинного состояния материи как численности. Если фундаментальной категорией представимости материи является состав (строение, частица), то фундаментальной категорией представимости численности является постав ("внешний вид" числа, "поворот") особая картина, свойственная отглагольной связке "есть". Как известно, для "объяснения устойчивости атомов" Бор предположил, что из всех орбит, допускаемых ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определенным условиям квантования. Бор постулировал, что, находясь на определенном уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход. Мы видим здесь механистическую модель числа ("деревянный автомат": с одной стороны, использовалась ньютонова механика, с другой — привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике). Речь в механике времени идет непосредственно о числе, о генезисе и структуре числа, выраженных соответственно в двух частях формулы единицы.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В этом сочинении я хочу предложить то, что не расходится с верой в существование души и не претит атеистическим воззрениям, которые хоть и являются такой же верой в её отсутствие, но основаны на определённых научных знаниях, а не слепом убеждении. Моя концепция позволяет не просто верить, а изучать душу на научной основе, тем самым максимально приблизиться к изучению бога, независимо от того, теист вы или атеист, ибо если мы созданы по образу и подобию, то, значит, наша душа близка по своему строению к душе бога.
За последние десять лет Россия усовершенствовала методы "гибридной войны", используя киберактивы для атаки и нейтрализации политических оппонентов. Хакеры, работающие на правительство, взламывают компьютеры и телефоны, чтобы собрать разведданные, распространить эти разведданные (или ложные данные) через средства массовой информации, создать скандал и тем самым выбить оппонента или нацию из игры. Россия напала на Эстонию, Украину и западные страны, используя именно эти методы кибервойны. В какой-то момент Россия, видимо, решила применить эту тактику против Соединенных Штатов, и поэтому сама американская демократия была взломана.
Правда всегда была, есть и будет первой жертвой любой войны. С момента начала военного конфликта на Донбассе западные масс-медиа начали выстраивать вокруг образа ополченцев самопровозглашенных республик галерею ложных обвинений. Жертвой информационной атаки закономерно стала и Россия. Для того, чтобы тени легли под нужным углом, потребовалось не просто притушить свет истины. Были необходимы удобный повод и жертвы, чья гибель вызвала бы резкий всплеск антироссийской истерии на Западе. Таким поводом стала гибель малайзийского Боинга в небе над Украиной.
В основе этой книги лежит машинописный текст, подготовленный историком-эмигрантом Игорем Ольгердовичем Глазенапом (1915–1996), писавшим также под фамилией Ланин – предков по материнской линии. После его смерти рукопись была передана руководителю издательства "Русская идея" архиепископом Брюссельским и Западноевропейским Серафимом (Дулговым, 1923–2003). Ныне оба этих достойных представителя русского зарубежья, славно потрудившиеся на благо России, ушли в мiр иной, завещав продолжение своих усилий соотечественникам на родине.
Американский певец Дин Рид — известный в первую очередь в СССР и странах Латинской Америки — прославился не только своими песнями, но и своими крайне левыми взглядами. Он, в частности, всегда защищал Советский Союз от нападок и даже написал открытое письмо к одному из самых известных диссидентов Александру Солженицыну. Опубликовано в журнале «Огонёк» № 5(2274), 1971 г.; «Литературная газета» № 5, 1971 г.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.