Матвей Петрович Бронштейн - [37]
Эти опыты, изучавшие комптоновское рассеяние в области высоких энергий, противоречили фотонной теории и законам сохранения. Сильное волнение, вызванное результатами Шэнкланда, и вспыхнувшие вновь дискуссии о применимости ЗС в микромире, кажутся сейчас объяснимыми только верой в сказочный закон, согласно которому третья попытка всегда успешна. Опыты Шэнкланда были очень скоро опровергнуты и забыты. Тогда же исчезли сомнения в ЗС.
Точку в этой истории Бор поставил в заметке, которая сопровождала публикацию экспериментов, опровергающих Шэнкланда: «основания для серьезных сомнений в строгой справедливости законов сохранения при испускании р-лучей атомным ядром сейчас в основном устранены» [119]. В словах «серьезных» и «в основном» можно усмотреть горечь по поводу разрыва родительских уз, связывающих Бора с гипотезой несохранения. Описывая историю нейтрино в 1957 г., Паули не без некоторого недоумения отметил: «Впрочем, справедливость закона сохранения энергии при р-распаде и существование нейтрино он [Бор] признал полностью лишь в 1936 г., когда уже была успешно развита теория Ферми» [Там же, с. 394].
А теперь рассмотрим внимательнее ход интересующих нас событий и попытаемся понять мотивы их участников.
4.2. Гипотеза несохранения и мотивы ее сторонников
а) В ожидании релятивистской теории квант. Первые сомнения Бора в ЗС, порожденные его антипатией к эйнштейновским квантам света, нашли мало сочувствия не только за пределами его группы, но и среди его сотрудников. Не разделял эти сомнения даже Слетер, на основе идеи которого (о виртуальном поле излучения) и в соавторстве с которым Бор в 1924 г. попытался реализовать «закон несохранения энергии» [202, с.138]. При этом следует сказать, что сомнения в идее световых квантов были довольно широко распространены, и не только среди физиков старшего поколения. Например, Ландау в 1927 г., рассматривая квантование электромагнитного излучения, сказал: «Введение световых квантов, однако, произвольно и не является необходимым» [213, с. 21] (в то же время Бронштейн, как видно по его первым работам, был на фотонных позициях). Квантовый парадокс (как называли тогда проблему совмещения дискретного и непрерывного описаний) скорее вдохновлял теоретиков, находящихся на подъеме. Сама сила парадокса предвещала такое его разрешение в теории, которое могло превзойти разрешение эфирных парадоксов теорией относительности. Но отказ от ЗС при отсутствии нового принципа, способного заменить его, для большинства теоретиков не имел тогда серьезных оснований.
В 1929 г., когда Бор вернулся к своей идее, ситуация существенно изменилась. В рамки ЗС не укладывался экспериментальный факт (непрерывность Р-спектра). И, что еще важнее, теория благословляла принципиально новое поведение Природы в соответствующей области, поведение, не обязанное подчиняться построенной и успешно действовавшей квантовой механике. Благословение это предшествовало надежному установлению экспериментального факта и от того становилось еще более убедительным. Ведь до открытия нейтрона (1932) считалось несомненным, что в состав ядра входят электроны: об этом «непосредственно» свидетельствовали сами Р-лучи. А появившийся в 1927 г. принцип неопределенности сделал ясным, что к внутриядерным электронам неприменима нерелятивистская теория, какой была квантовая механика: подставив размер ядра и массу электрона в соотношение AxAp~h, получим релятивистские скорости внутриядерных электронов, что выводит соответствующие явления в область релятивизма.
Для понимания сторонников боровской гипотезы важно учитывать общее состояние фундаментальной физики на рубеже 20—30-х годов. Это было время ожидания «релятивистской теории квант» — теории, в которой действовали бы наравне две мировые константы с и h. Дираковское уравнение для электрона (1928) считалось, конечно, выдающимся результатом, но неполноценным из-за отрицательных состояний. Кроме того, от подлинной ch-теории ожидалось гораздо большее, чем давало уравнение Дирака. Синтез релятивистских и квантовых идей в ch-теории казался чуть ли не последним важным событием в теоретической физике. Все ожидали, что ch-теория объяснит численное значение постоянной тонкой структуры а = e>2/ch и — тем самым — атомизм заряда [81, с. 205]. Только немногие осознавали, что за построением ch-теории должно еще последовать построение cGh-теории и (на ее основе) космологии [21, 250], для большинства же слабость гравитационного взаимодействия и его неучастие в атомной физике было достаточной причиной, чтобы оставлять G вне поля зрения.
С конца 20-х годов физики, не успевшие еще вполне привыкнуть к радикальным переменам, связанным с квантовой механикой, были вместе с тем уверены, что грядущая ch-теория принесет с собой еще более глубокую перестройку [252, с. 72]. Эта уверенность питалась несколькими причинами.
Во-первых, тогда еще не выдохлась программа единой теории поля [128]. Хотя к эйнштейновскому идеалу такой теории относились в основном скептически, единое представление релятивизма, квантов, гравитации и электромагнетизма казалось возможным в обозримом будущем. А такая возможность — даже при малой ее вероятности — окрыляла теоретическую мысль.
Эта книга — первая биография «отца советской водородной бомбы» и первого русского лауреата Нобелевской премией мира. В ее основе — уникальные, недавно рассекреченные архивные документы и около пятидесяти интервью историка науки Геннадия Горелика с людьми, лично знавшими А.Д. Сахарова еще студентом, затем — выдающимся физиком и, наконец, опальным правозащитником.Впервые в книге даны ответы на вопросы, как и почему главный теоретик советского термоядерного оружия превратился в защитника прав человека? Была ли советская водородная бомба создана физиками самостоятельно или при помощи разведки? Что общего между симметрией бабочки и асимметрией Вселенной? Как Андрей Сахаров смотрел на свою судьбу и что думал о соотношении научного мышления и религиозного чувства?
Современная наука родилась сравнительно недавно — всего четыре века назад, в эпоху Великой научной революции. Причины этой революции и отсутствие ее неевропейских аналогов до сих пор не имели признанного объяснения. А радикальность происшедшего ясна уже из того, что расширение и углубление научных знаний ускорились раз в сто.Эта книга рассказывает о возникновении новых понятий науки, начиная с изобретения современной физики в XVII веке и до нынешних стараний понять квантовую гравитацию и рождение Вселенной.
Как и почему далекий от политики физик-теоретик, создатель советского термоядерного оружия, превратился в убежденного защитника прав человека? Была ли водородная бомба создана нашими учеными самостоятельно или при помощи разведки? Что значили наука и свобода для Андрея Сахарова, как он смотрел на свою судьбу и что думал о соотношении научного поиска, политической активности и религиозного чувства? На эти вопросы отвечает историк Геннадий Горелик, автор множества книг и статей, посвященных истории отечественной науки.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Литературная работа известного писателя-казахстанца Павла Косенко, автора книг „Свое лицо“, „Сердце остается одно“, „Иртыш и Нева“ и др., почти целиком посвящена художественному рассказу о культурных связях русского и казахского народов. В новую книгу писателя вошли биографические повести о поэте Павле Васильеве (1910—1937) и прозаике Антоне Сорокине (1884—1928), которые одними из первых ввели казахстанскую тематику в русскую литературу, а также цикл литературных портретов наших современников — выдающихся писателей и артистов Советского Казахстана. Повесть о Павле Васильеве, уже знакомая читателям, для настоящего издания значительно переработана.».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Флора Павловна Ясиновская (Литвинова) родилась 22 июля 1918 года. Физиолог, кандидат биологических наук, многолетний сотрудник электрофизиологической лаборатории Боткинской больницы, а затем Кардиоцентра Академии медицинских наук, автор ряда работ, посвященных физиологии сердца и кровообращения. В начале Великой Отечественной войны Флора Павловна после краткого участия в ополчении была эвакуирована вместе с маленький сыном в Куйбышев, где началась ее дружба с Д.Д. Шостаковичем и его семьей. Дружба с этой семьей продолжается долгие годы. После ареста в 1968 году сына, известного правозащитника Павла Литвинова, за участие в демонстрации против советского вторжения в Чехословакию Флора Павловна включается в правозащитное движение, активно участвует в сборе средств и в организации помощи политзаключенным и их семьям.
21 мая 1980 года исполняется 100 лет со дня рождения замечательного румынского поэта, прозаика, публициста Тудора Аргези. По решению ЮНЕСКО эта дата будет широко отмечена. Писатель Феодосий Видрашку знакомит читателя с жизнью и творчеством славного сына Румынии.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга посвящена жизни, научной и общественной деятельности одного из известнейших русских ученых в области геологии и географии, внесшему крупный вклад в создание многих направлений в отечественной геологии — сейсмологии, геоморфологии, гляциологии, геокриологии, тектоники, гидрогеологии, инженерной геологии; основоположнику геологии Средней Азии; выдающемуся профессору — создателю ряда научных школ; большому общественному деятелю конца XIX в. Книга рассчитана на широкий круг читателей, интересующихся историей развития отечественной науки.
В брошюре доктора технических наук профессора В. А. Баринова рассказано о жизни, научной и педагогической деятельности выдающегося русского ученого Василия Васильевича Витковского, имя которого широко известно как в среде советских астрономов, геодезистов, картографов, так и за рубежом. Рассматривается литературное наследие ученого, в частности его знаменитая трилогия — «Практическая геодезия», «Топография» и «Картография», которая до настоящего времени сохраняет научно-педагогическую ценность. Брошюра написана по архивным материалам и личным воспоминаниям автора, ученика В.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга посвящена жизни и научной деятельности видного советского химика, организатора науки и педагога профессора Степана Афанасьевича Балезина. Он был зачинателем нового научного направления — защиты металлов от коррозии с помощью ингибиторов, ему принадлежат также работы в области становления преподавания химии в школе и вузе. В годы Великой Отечественной войны он был непосредственным участником организации работ по атомному ядру. Книга предназначена для специалистов-химиков и широкого круга читателей.