Математики тоже шутят - [35]

Шрифт
Интервал

Несколькими годами позже, уже в новом тысячелетии, Шнобелевская премия была вручена группе индийских математиков, подсчитавших площадь... слона.

4. Лучшее доказательство

История пятого постулата вдохновила известного французского карикатуриста Жана Эффеля на смешной и глубокий сюжет: он нарисовал Господа Бога, который дает урок геометрии юному Адаму. Бог стоит перед доской, на доске изображены два отрезка параллельных прямых, и Бог объясняет: «Вот две параллельные прямые. Они пересекаются только в бесконечности. Доказать этого нельзя, но я сам видел».

(Цит. по книге: Писаревский Б. М., Харин В. Т. Беседы о математике и математиках. М., 1998.)

5. Знак интеграла

Этот забавный файнворд (то есть головоломку, в которой надо искать слова, спрятанные, как правило, на стыках слов (например: «...научи слона...») написал профессор Борис Горобец.

Найдите 8 названий геометрических тел и их элементов, а также еще 3 основных математических термина, известных из средней школы. Все их буквы вписаны в отдельные или соседние слова этой смешной истории, взятой из жизни.

1977 год. В ЗИСТ (Заочном институте советской торговли) идет экзамен по высшей математике. Почти все студенты — труженики прилавка. Им известно, что молодой и симпатичный экзаменатор почти никогда не ставит двоек. Для него уже заготовили дефицитные харчи, сложили в пластиковый пакет два батона сервелата, икру, горилку с перцем и коньяк.

Вот он входит, улыбается, здоровается. Одна из заочниц искусно изображает испуг. Олицетворяя собой девственную невинность, она лепечет: «Ой, боюсь, ой, засыплюсь, ой, все забыла!..»

Преподаватель говорит: «Да не бойтесь вы, "неудов" скорее всего ставить не буду, гарантирую, что если студент ответит хотя бы на один вопрос, получит "уд". Берите билеты, готовьтесь. И давайте постараемся, чтобы ни вы меня не огорчали, ни я вас».

Действительно, через пару часов не сдала всего одна — томная розовощекая девица, зав отделом крупного гастронома, та, которая шептала «Ой, боюсь». У нее пустой лист, даже списать не смогла. По сути говорить с ней бестолку. Была бы хоть какая-то зацепка...

— Я не успела подготовиться, — говорит она. — Вчера у нас был день рождения. Мамин. Уснула поздно... Ничего не помню. Может, Вы мне дополнительный вопрос зададите?

— Ну ладно, — говорит препод. — Что такое интеграл? Расскажите своими словами.

Студентка долго молчит, потом говорит: «Я этот вопрос тоже не знаю. Может, вы мне еще один дополнительный вопрос зададите, последний, ну, пожалуйста?»

Преподаватель говорит: «Деточка, а как пишется знак интеграла, Вы хоть знаете? »

Девица молчит. Препод подсказывает: «Вспоминайте, червячок такой. Не спешите». И студентка не спеша рисует на бумаге ~~.

— Вертикальный, — поправляет преподаватель. И студентка рисует.

— Ну вот, — подводит итог экзаменатор, — на один вопрос ответили, а говорите, что все забыли. Тройка!

Подсказки. В нужных словах число букв: 3, 5, 4, 4, 4, 4, 5, 3, 5, 5, 3.

Ответы: тор, число, круг, угол, плюс, дуга, линия, куб, минус, точка, шар.

6. Новости науки

Знаете ли вы, что если повторять имя основателя теории множеств «Кантор» (или, еще лучше, «Кантора»), то оно превратится в слово «таракан»?

7. Сексуальная арифметика

1. Напишите, сколько дней в неделю вы хотите заниматься любовью (число не должно быть равно нулю, а вам должно быть не больше 99 лет).

2. Умножьте это число на 2.

3. К полученному числу прибавьте 5.

4. Умножьте сумму на 50.

5. Если в этом году у вас уже был день рождения, прибавьте 1759, если нет — 1758. [123]

6. Из полученного числа надо вычесть ваш год рождения.

Первая цифра полученного числа — это количество дней в неделю, которое вы хотите заниматься любовью. Две последние — ваш возраст.

8. История открытия

Этот забавный отрывок звучал несколько десятилетий назад в песенке-заставке познавательной радиопередачи «Семинар нерешенных проблем».

Однажды Лобачевский думал, кутаясь в пальто:
Как мир прямолинеен, видно, что-то здесь не то!
И он вгляделся пристальней в безоблачную высь,
И там все параллельные его пересеклись.

9. Заслуживает ПИетета

Едва только столкнувшись с понятием числа π в школе, мы начинаем относиться к этой константе неформально, почти персонифицируя ее. Начинается с заучивания фольклорных мнемограмм, позволяющих запомнить несколько первых знаков в десятичной записи числа. Вот, пожалуй, три самые известные:

1. Это я знаю и помню прекрасно: Пи многие знаки мне лишни, напрасны.

2. Чтобы правильно запомнить, надо только верно счесть — три, четырнадцать, пятнадцать, девяносто два и шесть.

3. Кто и шутя и скоро, пожелаетъ пи узнать число, уже знаетъ. (В этом дореволюционном примере ер (ъ) на концах слов после согласных пишется в соответствии с правилами тогдашней орфографии).

Затем, став старше и образованнее, мы с удивлением узнаем, что числу пи посвящено гораздо больше художественных произведений, чем иной знаменитости. Есть стихи (например: Один пижон имел пи жен), песни и книги, ему посвященные, есть известный фильм с таким названием, есть даже его портреты. А 14 марта (т.е. 3.14 в американском формате записи дат) отмечается неофициальный международный праздник — «День числа


Еще от автора Сергей Николаевич Федин
Сказки для взрослых

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Фантастические рассказы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Детективы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Игры со словами

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Логические задачи для юного сыщика

В книге представлено 30 занимательных задач, направленных на развитие логики ребенка, тренировку внимания и умение нестандартно мыслить. Задачи даны в виде загадочных детективных историй, которые раскрывает детектив Бусля. Чтобы помочь великому сыщику, нужно внимательно прочитать текст или найти ответ в рисунке. Такая игра не только увлечет ребенка, но и станет прекрасным развитием его умственных способностей. Адресовано детям 7—12 лет.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.