Математики, шпионы и хакеры. Кодирование и криптография - [29]

Шрифт
Интервал

Мы движемся к будущему, где мир будет опутан волоконно-оптическими сетями высокой емкости, связывающими наши повсеместно распространенные персональные компьютеры. Электронная почта станет нормой для всех, а не новинкой, как сегодня. Правительство будет защищать наши электронные сообщения государственными протоколами шифрования. Наверное, большинство людей примет это. Но, возможно, некоторые захотят иметь свои собственные защитные меры… Если конфиденциальность признать вне закона, только люди вне закона будут ею обладать.

Спецслужбы обладают лучшими криптографическими технологиями. Как и торговцы оружием и наркотиками. Как и военные подрядчики, нефтяные компании и другие корпорации-гиганты. Но обычные люди и общественные организации практически не имеют недорогих защитных криптографических технологий с открытым ключом. До сих пор не имели.

PGP дает людям возможность самим защищать свою конфиденциальность. Сегодня существует растущая социальная потребность в этом. Вот почему я написал PGP».

Из слов Циммермана мы видим, что жизнь в век информации сопряжена с угрозой нашим традиционным представлениям о частной жизни. Следовательно, глубокое понимание кодирования и механизмов шифрования, используемых вокруг нас, не только делает нас мудрее, но также может оказаться чрезвычайно полезным, когда речь идет о защите того, что для нас особенно ценно.

PGP с момента его создания становится все более популярным и представляет собой наиболее важный инструмент шифрования, доступный сегодня частным лицам.

* * *

БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ

Филипп Циммерман, родившийся в 1954 г., американский физик и инженер-программист, стоявший у истоков движения, которое стремится сделать современную криптографию доступной для всех. Кроме разработки системы PGP он в 2006 г. создал Zfone — программу для безопасной голосовой связи через Интернет. Он является президентом альянса OpenPGP, выступающего за открытое программное обеспечение.



Проверка подлинности сообщений и ключей

Различные системы шифрования с открытым ключом — или сочетающие открытые и закрытые ключи, как, например, PGP — обеспечивают высокий уровень конфиденциальности при передаче информации. Тем не менее, безопасность сложных систем связи, таких как интернет, заключается не только в конфиденциальности.

До появления современных коммуникационных технологий подавляющее большинство сообщений приходило от известных адресатов: от членов семьи, от друзей или от партнеров по бизнесу. Сегодня, однако, на каждого человека обрушивается лавина сообщений из множества источников. Подлинность этих сообщений часто невозможно определить исходя лишь из их содержания, со всеми вытекающими проблемами. Например, как мы можем предотвратить фальсификацию адреса электронной почты отправителя?

Диффи и Хеллман сами предложили гениальный способ использования шифрования с открытым ключом для проверки подлинности сообщения. В криптографических системах такого типа отправитель шифрует сообщение с помощью открытого ключа получателя, который в свою очередь использует свой закрытый ключ для расшифровки сообщения. Диффи и Хеллман заметили, что RSA и другие подобные алгоритмы обладают интересной симметрией. Закрытый ключ также можно использовать для шифрования сообщения, а открытый — для расшифровки. Этот подход не усиливает безопасность — ведь открытый ключ доступен для всех — зато получатель может убедиться, что сообщение пришло от определенного отправителя, владельца закрытого ключа. Чтобы проверить подлинность отправителя сообщения, теоретически достаточно добавить к нормальному шифрованию дополнительные шаги.

1. Отправитель шифрует сообщение с помощью открытого ключа получателя. Этот первый шаг гарантирует конфиденциальность.

2. Отправитель снова шифрует сообщение, на этот раз с помощью своего закрытого ключа. Таким образом удостоверяется подлинность сообщения, оно «подписано».

3. Получатель использует открытый ключ отправителя, чтобы расшифровать шифр шага 2. Таким образом проверяется подлинность сообщения.

4. Получатель теперь использует свой закрытый ключ, чтобы расшифровать шифр шага 1.


Хеш-функции

Одна из проблем теоретического процесса, о котором говорилось выше, заключается в том, что шифрование открытым ключом требует значительной вычислительной мощности и времени, и повторять этот процесс для подписания и проверки каждого сообщения было бы чрезвычайно невыгодно. Именно поэтому на практике подписание сообщения осуществляется с помощью математических ресурсов, называемых хеш-функциями. Для каждого оригинального сообщения эти функции генерируют простую цепочку битов (обычно 160), называемых хешем или хеш-кодом. Алгоритм работает таким образом, что вероятность того, что различные сообщения получат один и тот же хеш-код, почти равна нулю. Кроме того, практически невозможно обратить процесс и получить исходное сообщение, имея только хеш-код. Хеш каждого сообщения отправитель шифрует своим закрытым ключом и отправляет вместе с зашифрованным обычным образом исходным сообщением. Получатель расшифровывает с помощью открытого ключа отправителя ту часть сообщения, которая содержит хеш. Далее, определив таким образом хеш-код отправителя, получатель применяет хеш-функцию к полученному основному сообщению и сравнивает два хеша. Если они совпадают, личность отправителя подтверждается, и, кроме того, получатель теперь уверен, что никто не изменил исходное сообщение.


Еще от автора Жуан Гомес
Когда прямые искривляются. Неевклидовы геометрии

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.