Математики, шпионы и хакеры. Кодирование и криптография - [23]
* * *
Допустим, что на другом конце сообщение будет получено в виде 1010110. Заметим, что такая комбинация нулей и единиц не входит в число возможных кодов и, следовательно, является ошибкой при передаче. В попытке исправить ошибку система сравнивает каждую цифру с набором цифр всех возможных кодов, чтобы найти наиболее вероятную альтернативу. Для этого система проверяет, какие из цифр представляют собой ошибку, следующим образом.
Ошибочное слово (1010110) отличается от другого слова (1000110) одной цифрой. Так как эта разница наименьшая, система предложит получателю этот второй, исправленный вариант. Аналогичный принцип использует программа контроля правописания текстового редактора. При обнаружении слова, которое не содержится в ее внутреннем словаре, программа предлагает ряд близких альтернатив.
Количество позиций, в которых соответствующие символы двух слов (понимаемых как последовательность символов) различны, называется расстоянием между двумя последовательностями. Этот метод обнаружения и исправления ошибок был предложен американцем Ричардом Хэммингом (1915–1998), современником Клода Шеннона.
В теории информации, как и в любой другой области, одно дело — обнаружить возможные ошибки, и совсем другое — исправить их. В шифровании, как в последнем примере, если имеется только один кандидат с наименьшим расстоянием, проблема достаточно проста. Пусть t — минимальное количество раз, когда единица появляется в последовательности цифр (исключая последовательность, где все нули), тогда:
Если t — нечетное, мы можем исправить (t — 1)/2 ошибок.
Если t — четное, мы можем исправить (t — 2)/2 ошибок.
Если наша цель заключается только в обнаружении ошибок, максимальным количеством ошибок, которые мы можем обнаружить, будет I — 1. В языке из 16 символов, описанном выше, t = 3, значит, наш метод способен обнаружить 3–1 = 2 ошибки и исправить — (3–1): 2 = 1 — одну ошибку.
* * *
КРИПТОГРАФИЯ ТРЕТЬЕГО ПОКОЛЕНИЯ
В 1997 г. был введен протокол для надежной передачи информации с помощью беспроводных сетей под названием WEP (сокращение от Wired Equivalent Privacy). Этот протокол включает алгоритм шифрования RC4 с двумя типами кодирования 5 и 13 ASCII-символов соответственно. Мы имеем дело, таким образом, с кодированием 40 или 104 битов или, другими словами, 10 или 26 шестнадцатеричных символов:
5 ASCII-символов = 40 битов = 10 шестнадцатеричных символов;
13 ASCII-символов — 104 битов = 26 шестнадцатеричных символов.
Провайдер подключения предоставляет коды, хотя пользователь может, в принципе, их изменить. До установления связи компьютер запрашивает ключ. В следующем диалоговом окне мы видим сообщение об ошибке при запросе WEP-ключа с указанием его длины в битах, ASCII- и шестнадцатеричных символах:
На самом деле реальные ключи длиннее. Используя ключ, выбранный пользователем, алгоритм RC4 генерирует новый с большим количеством битов, который и используется для шифрования передаваемых данных. Это — криптография с открытым ключом, и о ней будет более подробно рассказано в пятой главе. Пользователь, который желает поменять ключ, должен помнить, что ключ из десяти шестнадцатеричных символов более надежен, чем ключ из пяти букв и цифр, хотя битовый размер у них одинаковый. Однако очевидно, что слово james легче запомнить, чем его шестнадцатеричный эквивалент «6A616D6573».
Хотя и не такие впечатляющие, как криптография или двоичная математика, и часто незаметные для нас, несмотря на их вездесущность, стандартизированные коды банков, супермаркетов и других крупных подсистем экономики являются одной из основ современного общества. Только в этом случае задача состоит в обеспечении уникальной и точной идентификации продукта, будь то банковские счета, книги или яблоки. Рассмотрим эти коды более подробно.
Кредитные карты
Дебетовые и кредитные карты, предлагаемые крупными банками и универмагами, фактически определяются набором групп чисел, рассчитанных и проверяемых одним и тем же алгоритмом, основанным на уже известной нам модульной арифметике.
Большинство карт имеет 16 цифр от 0 до 9. Числа сгруппированы по четыре цифры, чтобы их легче было прочитать. Для наших целей мы будем обозначать их следующим образом:
ABCD EFGH IJKL MNOP
Каждая группа цифр кодирует определенную информацию: первая группа (ABCD) идентифицирует банк (или любой другой субъект, оказывающий услуги).
Каждый банк имеет свой номер, который может меняться в зависимости от континента, а также от бренда карты и условий. Пятая цифра (Е) соответствует типу карты и указывает, какое финансовое учреждение управляет счетом.
Как мы видим, это не жесткое правило.
Следующие десять цифр (FGH IJKL MNO) являются уникальным идентификатором для каждой карты. Эти числа связаны с номером счета клиента, с уровнем карты — Classic, Gold, Platinum и т. д., а также с кредитным лимитом, сроком действия и процентными ставками по типу баланса.
Наконец, контрольная цифра (Р) связана с предыдущими цифрами в соответствии с алгоритмом Луна.
В России первые шесть цифр номера карты (ABCDEF) являются банковским идентификационным номером (БИН). Первая из этих шести цифр указывает на платежную систему. Например, у карт
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.