Математики, шпионы и хакеры. Кодирование и криптография - [21]
Одним из многих приложений двоичной системы является особый набор символов, состоящий из восьми битов и называемый байтом. Каждый байт обозначает букву, цифру или другой символ. Именно байты лежат в основе обычных коммуникаций.
Они называются ASCII-кодами (аббревиатура ASCII переводится как «американская стандартная кодировочная таблица»). Количество размещений (с повторениями) из двух цифр (0 и 1) по 8 (длина символа) составляет 28 = 256.
ASCII-коды позволяют пользователям вводить текст в компьютер. Когда мы печатаем букву или цифру, компьютер превращает этот символ в байт — строку из восьми битов. Так, например, если мы печатаем букву А, компьютер превращает ее в 0100 0001.
* * *
БАЙТЫ ПАМЯТИ
Емкость памяти компьютера измеряется в единицах, кратных байтам.
Килобайт (КБ): 1024 байтов
Мегабайт (МБ): 1 048 576 байтов
Гигабайт (ГБ): 1 073 741 824 байтов
Терабайт (ТБ): 1099 511627 776 байтов
* * *
Двоичные ASCII-коды приведены для всех используемых в обычном обиходе символов: 26 заглавных букв, 26 строчных букв, 10 цифр, 7 символов пунктуации и некоторых специальных символов. Все они показаны в следующей таблице.
Для двоичного кода каждого символа указано соответствующее десятичное число (в столбце «Дес»):
Фразу «GOTO 2» (команду на языке программирования «Бейсик») компьютер переведет в следующую последовательность двоичных кодов:
Компьютер, таким образом, будет выполнять следующую команду:
010001110100111101010100010011110010000000110010
Шестнадцатеричная система — еще один известный код, используемый в вычислениях. Это система счисления, которая использует 16 уникальных «цифр» (отсюда и название — шестнадцатеричная), в отличие от обычной системы с десятью цифрами (десятичной). Можно сказать, что шестнадцатеричная система является вторым языком компьютеров после двоичной системы. Почему 16 цифр? Напомним, что байт, основная единица хранения информации на компьютере, состоит из восьми битов, которые дают 2>8 = 256 различных комбинаций из 0 и 1. А 2>8 = 2>4 х 2>4 = 16 х 16. Иными словами, один байт — это комбинация двух шестнадцатеричных чисел.
Шестнадцать «цифр» шестнадцатеричной системы — это традиционные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и еще шесть символов, выбранных по соглашению: А, В, С, D, Е, F. Числа в шестнадцатеричной системе записываются следующим образом:
От 0 до 15: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.
От 16 до 31: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1А, 1В, 1C, ID, IE, 1F.
От 32 и дальше: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2А, 2В, 2С…
Эти файлы были созданы компьютером автоматически. Их странные имена — на самом деле шестнадцатеричные числа.
Шестнадцатеричные цифры не различают регистр букв (1Е означает то же самое, что и 1е). В следующей таблице приведены первые 16 двоичных чисел и их шестнадцатеричные эквиваленты:
Чтобы перейти от двоичной записи к шестнадцатеричной, мы сгруппируем биты в четыре группы по четыре цифры, начиная с правого конца, а потом преобразуем каждую четверку цифр в соответствии с предыдущей таблицей. Если количество двоичных цифр не кратно четырем, мы дописываем слева нули. Чтобы перейти от шестнадцатеричной записи к двоичной, мы преобразуем каждую шестнадцатеричную цифру в ее двоичный эквивалент, как показано в следующем примере.
Шестнадцатеричное число принято обозначать так: 9F2>16 (с нижним индексом 16). Напомним соответствующие двоичные коды:
9F2>16 = 1001111100102 (здесь нижний индекс 2 указывает, что число выражено в двоичной системе).
Давайте теперь осуществим обратный процесс: число 11101001102 состоит из десяти цифр. Мы дополняем его двумя нулями слева, чтобы получить 12 цифр, которые можно сгруппировать по четыре.
Преобразуем:
1110100110>2 = 0011 1010 0Н0>2 = 3А6>16.
Какая связь между шестнадцатеричными символами и ASCII-кодами? Каждый ASCII-код содержит восемь битов (один байт) информации, поэтому пять ASCII-символов содержат 40 битов (пять байтов), и так как шестнадцатеричный символ содержит четыре бита, мы заключаем, что пять ASCII-символов — это десять шестнадцатеричных символов.
Рассмотрим пример кодирования фразы в шестнадцатеричном коде. Например, возьмем название NotRealCo Ltd. Выполним следующие действия. 1 2 31. Переведем NotRealCo Ltd в двоичные коды в соответствии с таблицей ASCII.
2. Сгруппируем цифры по четыре. (Если длина двоичной строки не кратна четырем, мы добавим нули слева.)
3. Выполним замену по таблице соответствий двоичных и шестнадцатеричных символов.
Фраза NotRealCo Ltd в шестнадцатеричных символах выглядит так:
4Е 6F 74 72 65 61 6С 63 6F 20 48 74 64.
Если система счисления имеет n цифр, то число n называется основанием системы.
На руках человека десять пальцев, поэтому, вероятно, и была придумана десятичная система счисления — счет проводился на пальцах. Десятичное число, например, 7392, представляет собой количество, равное семи тысячам трем сотням девяти десяткам и двум единицам. Тысячи, сотни, десятки и единицы являются степенями основания системы счисления, в данном случае 10. Число 7392, таким образом, может быть выражено следующим образом:
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.