Математики, шпионы и хакеры. Кодирование и криптография - [17]
Слева: немецкие солдаты во время Второй мировой войны записывают сообщение, зашифрованное с помощью <<Энигмы». Справа: реплика четырехроторной «Энигмы».
«Энигма» представляла собой электромагнитное устройство, внешне похожее на пишущую машинку. Уникальной ее делало то, что ее механические части меняли положение после каждого нажатия клавиш, так что даже при нажатии подряд одной и той же буквы символ каждый раз кодировался по-новому.
На практике процесс шифрования был относительно прост. Сначала оператор устанавливал различные разъемы и роторы машины в соответствии с исходным положением, заданным справочником кодов, используемых на данный момент (эти справочники регулярно менялись). Затем он печатал первую букву открытого текста, и машина автоматически генерировала код, который появлялся на светящейся панели — это была первая буква зашифрованного сообщения.
Первое переключение ротора поворачивало его в одну из 26 возможных позиций. Каждое положение переключателя соответствовало новому шифру. После этого оператор вводил вторую букву и так далее. Чтобы расшифровать сообщение, достаточно было ввести зашифрованные символы в другую машину «Энигма» с теми же исходными параметрами, что и у машины, использованной для шифрования.
* * *
ТРАНШЕЙНЫЕ КОДЫ
В бою использовать сложные шифры, такие как ADFGVX, было очень трудно. Во время гражданской войны в Испании (1936–1939), например, применялся более простой шифр подстановки:
Как мы видим, несколько букв имеют более одного зашифрованного символа. Например, буква R может быть заменена на 28 или 54. Слово GUERRA («Война») будет зашифровано как 167427285453. Эти коды, которые фактически были шифром подстановки, получили название траншейных кодов и предназначались для особых целей.
Clave Violeta («фиолетовый ключ», слева) использовался 415-м батальоном 104-й бригады республиканцев и был перехвачен националистами. Примечание переводится как: «Шифры обязательно должны быть представлены в виде букв. Столбцы [строки] с пометкой (1) соответствуют алфавиту. Столбцы с пометкой (2) соответствуют их зашифрованным эквивалентам».
Для обеспечения более высокого уровня секретности националисты во главе с генералом Франко применили особое оружие — 30 машин «Энигма», присланных нацистскими союзниками.
Это было первое интенсивное использование в военных целях шифровальных устройств, которые Германия начала широко применять во время Второй мировой войны. Британцы пытались взломать код во время испанского конфликта, но безуспешно.
Телеграмма от 27 октября 1936 г. начальнику сектора Гэанада (республиканцу): «Ваша телеграмма, зашифрованная вчера… не подлежит расшифровке».
Зашифрованное сообщение республиканцев, перехваченное испанскими фашистами-фалангистами на Канарских островах.
* * *
На рисунке на следующей странице представлена упрощенная схема механизма «Энигмы», где для шифрования используются роторы с алфавитом из трех букв.
В результате каждый ротор имеет только три возможных позиции, а не 26, как в реальной машине.
Как мы видим, когда ротор машины «Энигма» находится в исходном положении, каждая буква открытого сообщения заменяется на другую, за исключением буквы А. После шифрования первой буквы ротор поворачивается на одну треть оборота.
В новой позиции буквам теперь соответствуют другие — не те, что в первом шифре.
Процесс завершается третьей буквой, после чего ротор возвращается в исходное положение и последовательность шифров повторяется.
Роторы стандартной машины «Энигма» имеют 26 позиций, по одной на каждую букву алфавита. Следовательно, с одним ротором можно применять 26 различных шифров. Таким образом, начальное положение ротора является ключевым.
Для увеличения количества возможных ключей дизайн «Энигмы» предусматривал до трех роторов, механически соединенных друг с другом. Когда первый ротор делал полный оборот, следующий переключался на одно положение, и так далее до полного оборота третьего ротора, что давало в общей сложности 26 х 26 х 26 = 17576 возможных шифров.
Кроме того, дизайн Шербиуса позволял изменять порядок переключателей, еще больше увеличивая количество шифров, как мы увидим ниже.
Трехроторная машина «Энигма» с частично открытым корпусом, позволяющим видеть коммутационную панель (спереди).
Кроме трех роторов «Энигма» также имела коммутационную панель, расположенную между первым ротором и клавиатурой. Коммутационная панель позволяла перекоммутировать соединения между буквами клавиатуры до соединения с ротором и таким образом добавляла значительное количество кодов к шифру. Стандартный дизайн «Энигмы» предусматривал шесть кабелей, которые могли соединять шесть пар букв. На следующем рисунке показана работа коммутационной панели, снова в упрощенной форме для трех букв и трех кабелей.
Таким образом, буква А меняется местами с буквой С, буква В — с буквой А, а С — с буквой В. С добавлением коммутационной панели упрощенная трехбуквенная «Энигма» будет работать следующим образом:
На сколько больше шифров мы получим при, казалось бы, простом добавлении коммутационной панели? Сначала посчитаем количество способов соединения шести пар букв, выбранных из 26 возможных. Число способов выбрать
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.