Математики, шпионы и хакеры. Кодирование и криптография - [14]
Наше внимание сразу привлекает то, что слово BY исходного сообщения шифруется в обоих случаях одинаково — XY. Это связано с тем, что второй раз BY встречается после восьми символов, а восемь кратно количеству букв (четыре) в ключевом слове (WALK). Обладая этой информацией и имея достаточно длинный исходный текст, можно догадаться, какова длина ключевого слова. Процедура заключается в следующем: вы отмечаете все повторяющиеся символы и записываете, через сколько позиций они повторяются. Затем вы находите все делители этих чисел. Общие делители и являются кандидатами на длину ключевого слова.
Предположим, что наиболее вероятный кандидат — число 5, потому что это общий делитель, который встречается чаще всего. Теперь мы попытаемся догадаться, каким буквам соответствует каждая из пяти букв ключевого слова. Как мы помним, каждая буква ключевого слова в квадрате Виженера определяет моноалфавитный шифр для соответствующей буквы в исходном сообщении. В случае нашего гипотетического ключевого слова из пяти букв (C1, С2, СЗ, С4, С5) шестая буква (С6) шифруется тем же алфавитом, что и первая буква (С1), седьмая (С7) — тем же, что и вторая (С2), и так далее. Поэтому на самом деле криптоаналитик имеет дело с пятью отдельными моноалфавитными шифрами, каждый из которых уязвим для традиционного криптоанализа.
Процесс завершается составлением таблицы частот для всех букв в зашифрованном тексте, соответствующих буквам ключевого слова (C1, С6, С11 … и С2, С7, С12 …). Таким образом, получается пять групп букв, вместе составляющих все сообщение. Затем, чтобы расшифровать ключевое слово, эти таблицы частот сравниваются с таблицами частот языка, на котором написано исходное сообщение.
Если таблицы не совпадают, процесс повторяется с другой вероятной длиной ключевого слова. Как только мы определим ключевое слово, останется только расшифровать исходное сообщение. С помощью этого метода и был взломан полиалфавитный шифр.
Поразительные работы Бэббиджа, завершенные около 1854 г., так бы и остались в безвестности. Эксцентричный британский интеллектуал не опубликовал свое открытие, и только недавние исследования его записок показали, что именно он был пионером в расшифровке полиалфавитных ключевых слов. К счастью для криптоаналитиков всего мира, несколько лет спустя, в 1863 г., прусский офицер Фридрих Касиски опубликовал аналогичный метод.
Независимо оттого, кто первый взломал его, полиалфавитный шифр перестал быть неприступным. С этого момента сила шифра стала зависеть не столько от алгоритмических нововведений шифрования, сколько от количества используемых шифроалфавитов, которое должно быть достаточно большим, чтобы сделать частотный анализ и его варианты совершенно бесполезными. Параллельной целью был поиск способов ускорения криптоанализа. Обе цели пересеклись в одной точке и породили один и тот же процесс: компьютеризацию.
Рабочая часть разностной машины Бэббиджа, построенной в 1991 г. в соответствии с чертежами, оставленными ее изобретателем. Устройство позволяет находить приближенные значения логарифмических и тригонометрических функций и, следовательно, делать расчеты астрономических таблиц. Бэббидж не успел при жизни увидеть свою машину.
Глава 3. Шифровальные машины
В XIX в. шифрование оказалось полезным не только для пересылки секретных сообщений. Появление телеграфа в первой трети века и затем, спустя 30 лет, развитие двусторонней телеграфной связи Томасом Альвой Эдисоном произвело революцию в коммуникации и, следовательно, изменило мир. Так как телеграф использовал электрические импульсы, нужен был метод для перевода текста сообщения на язык, который машина может воспроизвести и передать. Другими словами, необходимо было кодирование. Среди различных предложенных методов верх взяла система передачи букв точками и тире, придуманная американским художником и изобретателем Сэмюэлом Морзе. Азбуку Морзе можно считать предшественником кодов, которые многие десятилетия спустя неявно используются всеми нами для ввода данных в компьютеры и получения информации от них.
Азбука Морзе использует комбинацию точек, тире и пробелов для представления букв алфавита, цифр и других символов. Таким образом, она переводит алфавит в набор знаков, которые могут быть выражены с помощью простых сигналов света, звука или электричества. Каждая точка соответствует единице времени продолжительностью около 1/25 доли секунды; каждое тире — три единицы времени (эквивалентно трем точкам). Длина пробелов между буквами — также три единицы времени, а пять единиц соответствуют пробелам между словами.
Сначала Морзе было отказано в патенте на этот код и в Соединенных Штатах, и в Европе. Лишь в 1843 г. он получил государственную субсидию для строительства телеграфной линии между Вашингтоном и Балтимором. В 1844 г. была произведена первая передача закодированного сообщения, и почти сразу была создана компания с целью охвата всей Северной Америки телеграфными линиями. К 1860 г., когда Наполеон III наградил Морзе орденом Почетного легиона, Соединенные Штаты и Европа уже были опутаны телеграфными проводами. К моменту смерти Морзе в 1872 г. в Америке было проложено более 300000 километров кабеля.
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.