Математика в занимательных рассказах - [15]
Он был прав; оставалось лишь произвести измерение плотности.
К этому и приступил профессор. Он взял выточенный из горной породы кубик объемом в один кубический дециметр.
— Этот кубик, — объяснил он, — состоит из того неизвестного вещества, которое мы всюду находили на Галлии во время кругосветного плавания. По-видимому, моя комета целиком состоит из этого вещества. Здесь перед нами кубический дециметр этого минерала. Сколько бы весил он на Земле? Мы найдем его земной вес, если умножим на 7 вес его на Галлии, так как напряжение тяжести на Галлии в 7 раз слабее, чем на Земле. Взвесим же этот образчик. Это равносильно тому, как если бы мы нацепили на крючок весов нашу комету.
Кубик был подвешен к крючку, и стрелка показала 1 килограмм 430 граммов.
— Один килограмм 430 граммов, — громко объяснял профессор, — умноженные на 7, составляют почти ровно 10 килограммов. А так как средняя плотность земного шара круглым счетом равна 5, то средняя плотность Галлии вдвое более плотности Земли. Если бы не это обстоятельство, напряжение тяжести на комете было бы не в 7 раз слабее земного, а в 14.
Итак, теперь уже были известны диаметр Галлии, ее поверхность, объем, плотность и напряжение на ней тяжести. Оставалось определить ее массу, а следовательно, и вес.
Вычисление было выполнено быстро. Так как кубический дециметр вещества Галлии весил 10 земных килограммов, то вся комета должна весить столько раз по 10 килограммов, сколько в ее объеме содержится кубических дециметров. Объем Галлии, как мы уже знаем, равен 198 720 000 кубическим километрам. Поэтому вес Галлии выражается в килограммах огромным числом из 22 цифр, а именно:
1 987 200 000 000 000 000 000,
т. е. 1987 триллионов 200 000 биллионов килограммов.[19] Такова в земных килограммах масса Галлии.
— Сколько же тогда весит Земля? — спросил ординарец.
— А понимаешь ли ты, что такое миллиард? — спросил его Сервадак.
— Плоховато, капитан.
— Ну, так знай же, что от начала нашей эры не прошло еще одного миллиарда минут,[20] и если бы ты должен был миллиард франков, то, начав выплачивать с того времени по франку каждую минуту, ты до сих пор не расплатился бы.
— По франку в минуту! — воскликнул Бен-Зуф. — Да я разорился бы в первую четверть часа. А сколько же все-таки весит Земля?
— Пять квадрильонов 979 тысяч триллионов килограммов,[21] — ответил лейтенант Прокофьев. — Число это состоит из 25 цифр.
— А Луна?
— 73 тысячи 700 триллионов килограммов.[22]
— Только всего. А Солнце?
— Два квинтильона[23] килограммов, число из 31 цифры.
— Ровно два квинтильона? — воскликнул Бен-Зуф. — Наверное, на несколько граммов ошиблись…
Профессор бросил на ординарца презрительный взгляд и величественно вышел из зала, чтобы подняться в свою обсерваторию.
— И к чему, скажите, все эти вычисления, — спросил ординарец, — которые ученые проделывают, словно какие-то фокусы?
— Ни к чему, — ответил капитан, — в этом-то и вся их прелесть!
Примечания редактора
1
Жюль Верн держится в этом произведении устарелого ныне взгляда на кометы, считая их голову сплошным твердым шаром большой поверхности. В настоящее время голову кометы рассматривают как весьма рыхлое скопление твердых частиц.
2
Монеты СССР, как и французские, имеют установленные законом размеры и вес, а именно:
Медные, образца 1924 г.
Медные (бронзовые) нов. образца:
Диаметр золотого червонца — 2 сантиметра, вес — 8,53 грамма (2 золотника).
Легко видеть, что восстановить длину метра, пользуясь нашими монетами, довольно просто: для этого достаточно выложить в ряд 30 серебряных рублей.
33,4 мм × 30 = 1002 миллиметра = 1,002 метра.
Здесь получается избыток в 2 миллиметра. Пользуясь же новыми бронзовыми монетами, это можно сделать вполне точно, взяв 40 пятаков или 50 трехкопеечных монет:
25 мм × 40 = 1000 мм = 1 м;
20 мм × 50 = 1000 мм = 1 м.
Для составления веса в 1 килограмм можно взять 50 серебряных рублей или 100 полтинников:
20 г × 50 = 1000 г = 1 кг;
10 г × 100 = 1000 г = 1 кг.
3
Для вычисления массы Галлии существует другой, более короткий путь, нежели тот, который описан в романе. Действительно, раз известны диаметр Галлии и напряжение тяжести на ее поверхности, то массу ее можно было вычислить, не делая никаких новых измерений, — в частности, не измеряя непосредственно ее средней плотности. Напротив, эту плотность можно было по указанным данным определить вычислением гораздо надежнее, чем измерением.
Ход вычисления массы весьма несложен. Допустим, что масса Галлии равна массе Земли, между тем как радиус ее составляет всего 370 километров. Тогда напряжение тяжести на Галлии было бы больше, чем на поверхности Земли, соответственно большей близости тяготеющих предметов к центру притяжения. А именно: по закону обратных квадратов сила притяжения на уменьшенном расстоянии должна была бы возрасти в отношении
В действительности же, как показало измерение с помощью пружинных весов, напряжение тяжести на поверхности Галлии не только не возросло в указанном отношении, но, напротив, еще ослабело в 7 раз. Другими словами: напряжение тяжести на реальной Галлии меньше, чем на нашей воображаемой (с массой, равной массе Земли) в 7 × 299 = 2093 раза. Это различие может быть обусловлено только одной причиной: тем, что истинная масса Галлии во столько же раз меньше предположенной (притяжение прямо пропорционально массе). Итак, масса Галлии составляет
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
Одно из лучших классических пособий по физике.Занимательные рассказы, поучительные опыты, интересные факты научат любознательного читателя замечать простейшие физические явления и понимать их природу.
«Научные фокусы и загадки» — это увлекательная коллекция хитрых вопросов, занимательных задач, интересных загадок, головоломок, фокусов и игр. Эта книга для веселых, находчивых и сообразительных читателей!