Математика. Утрата определенности. - [51]

Шрифт
Интервал

может казаться таким же, как цвет b, а цвет b — таким же, как цвет c, и все же цвет a иногда удается отличить от цвета c.

Много других примеров можно привести в подтверждение того, что наивное применение арифметики иногда давало нелепые результаты. Так, смешав два равных объема воды — один при температуре 40°C, другой при температуре 50°C, — мы не получим удвоенного объема при температуре 90°. Путем наложения двух гармонических тонов — одного с частотой 100 Гц, другого с частотой 200 Гц — мы не получим гармонический тон с частотой 300 Гц. В действительности составной тон будет иметь частоту 100 Гц. Соединив в электрической цепи параллельно два резистора с сопротивлениями R>1 и R>2, мы получим сопротивление величиной R>1R>2 / (R>1 + R>2), a не сопротивление R>1 + R>2. Как в шутку заметил некогда Анри Лебег (1875-1941), поместив в клетку льва и кролика, мы не обнаружим в ней позднее двух животных.

Из химии известно, что, смешивая водород и кислород, можно получить воду. Но если взять два объема водорода и один объем кислорода, то мы получим не три, а два объема водяного пара. Аналогично из одного объема азота и трех объемов водорода мы получим два объема аммиака. Физическое объяснение этой удивительной арифметики ныне известно. По закону Авогадро, в равных объемах любого газа при одинаковой температуре и одинаковом давлении содержится равное число частиц. Например, если в данном объеме кислорода содержится 10 молекул, то при той же температуре и том же давлении в равном объеме водорода содержится также 10 молекул. Следовательно, удвоенный объем водорода содержит 20 молекул. Известно, что молекулы кислорода и водорода двухатомны. Каждая из 20 двухатомных молекул водорода, соединяясь с одним атомом кислорода, образует молекулу воды. Так как всего имеется 10 молекул кислорода, то образуется 20 молекул воды, т.е. два, а не три объема. Таким образом, обычная арифметика не дает правильного описания того, что происходит при смешении газов, если подсчет производить по объемам.

Обычная арифметика не позволяет правильно описать и то, что происходит при смешении некоторых жидкостей. Если кварту джина смешать с квартой вермута, то получится чуть меньше двух кварт смеси. Смешав 1 л спирта с 1 л воды, мы получим 1,8 л спиртового раствора. То же справедливо и для большинства жидкостей, в состав которых входит спирт. Взяв столовую ложку, воды и столовую ложку соли, мы не получим две столовые ложки крепкого раствора соли. При смешивании некоторых химических веществ происходит взрыв — объем смеси заведомо не равен сумме объемов исходных веществ. 

Для описания многих физических ситуаций неприменимы не только свойства целых чисел — на практике нередко приходится прибегать к совсем иной арифметике дробных чисел. Рассмотрим, например, футбол, столь любимый миллионами болельщиков во всем мире.

Предположим, что в одной игре нападающий трижды пробил по воротам противника, а в другой игре — четыре раза. Сколько раз всего он бил по воротам противника? Подсчитать нетрудно: всего он бил по воротам противника 7 раз. Предположим, что в первой игре наш нападающий забил 2 гола, а во второй — 3 гола. Сколько голов он забил за две игры? И на этот раз ответ получить легко: за две игры он забил 2 + 3 = 5 голов. Но и болельщиков, и самого игрока обычно интересует средняя результативность, т.е. отношение числа забитых голов к числу ударов по воротам противника. В первой игре это отношение было равно 2/3, во второй — 3/4. Предположим, что нападающий или болельщик хочет по этим данным вычислить среднюю результативность за две игры. Некоторые полагают, что для этого необходимо лишь сложить оба отношения по обычным правилам сложения дробей, т.е. составить сумму: 

2/3 + 3/4 = 17/12.

Но полученный таким образом результат явно лишен всякого смысла: ни один нападающий за 12 ударов по воротам противника не может забить 17 голов! Ясно, что обычные правила сложения дробей непригодны для подсчета средней результативности: средняя результативность за две игры не совпадает с суммой средних результативностей, вычисленных для каждой из игр в отдельности. Каким же образом, зная результативность нападающего в каждой из двух игр в отдельности, правильно вычислить среднюю результативность за две игры? Для этого необходимо воспользоваться новым правилом сложения дробей. Мы знаем, что результативность нападающего по двум играм составляет 5/7, а в первой и во второй играх равна соответственно 2/3 и 3/4. Нетрудно видеть, что, сложив отдельно числители и знаменатели слагаемых, мы получим новую дробь, дающую правильный ответ: 

2/3 

3/4 = 5/7.

(знак плюс, который мы не случайно обвели кружком, означает здесь, что числители и знаменатели суммируются отдельно).

Предложенное нами правило «сложения» дробей оказывается полезным и в других ситуациях. Продавец, ведущий учет эффективности своей торговли, может заметить, например, что в первый день покупки сделали 3 из 5 посетителей, а во второй день — 4 из 7. Чтобы вычислить эффективность торговли за два дня, т.е. найти отношение числа покупок к общему числу посетителей, продавец должен сложить 3/5 и 4/7 по тому же правилу, по которому нападающий вычислял свою результативность за две игры. За два дня покупки сделали 7 посетителей из 12, а 7/12 = 3/5 + 4/7, где знак плюс означает сложение отдельно числителей и отдельно знаменателей.


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Том 33. Разум, машины и математика. Искусственный интеллект и его задачи

Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.