Математика. Утрата определенности. - [30]
Наконец, используя приближенные методы, Ньютон решил некоторые задачи, относящиеся к движению Луны. Например, известно, что плоскость, в которой происходит движение Луны, несколько наклонена к плоскости движения Земли. Как показал Ньютон, это обусловлено взаимным притяжением Солнца, Земли и Луны, описываемым законом всемирного тяготения. Ньютон и его непосредственные преемники в науке вывели из закона всемирного тяготения так много важных следствий о движениях планет, комет и Луны, а также о колебаниях уровня моря, что на протяжении последующих двух столетий считалось, что они дали полное объяснение системы мира.
В своей грандиозной деятельности Ньютон придерживался принципа, выдвинутого Галилеем, — искать не физическое объяснение, а математическое описание. Ньютон не только свел воедино огромное число экспериментальных данных и теоретических результатов Кеплера, Галилея и Гюйгенса, но и поставил математическое описание в основу всех своих естественнонаучных трудов и предсказаний. В предисловии к первому изданию своего основного труда, носившего весьма примечательное название «Математические начала натуральной философии»{30}, Ньютон говорит:
Так как древние, по словам Паппуса, придавали большое значение механике при изучении природы, то новейшие авторы, отбросив субстанции и скрытые свойства, стараются подчинить явления природы законам математики.
В этом сочинении имеется в виду тщательное развитие приложений математики к физике, поэтому и сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. Затем по этим силам, также при помощи математических предложений, выводятся движения планет, комет, Луны и моря.
([20], с. 1-3.)
Мы видим, что математике в «Началах» Ньютона отводится главная роль.
У Ньютона имелись все основания отдавать количественным математическим законам предпочтение перед физическим объяснением: центральным физическим понятием ньютоновской небесной механики была сила тяготения, а действие этой силы он не мог объяснить с помощью физических понятий. Представление о силе тяготения, действующей между любыми двумя массами, даже если их разделяют сотни миллионов километров пустого пространства, казалось столь же невероятным, как и многие свойства, придуманные для объяснения физических явлений последователями Аристотеля и средневековыми схоластами. Представление о дальнодействующих силах было особенно неприемлемым для современников Ньютона, упорно настаивавших на механистических объяснениях и привыкших воспринимать силу как результат непосредственного соприкосновения тел, при котором одно тело «толкает» другое.{31} Отказ от физического объяснения и прямая замена его математическим описанием явления потрясли даже великих ученых. Гюйгенс считал идею гравитации «абсурдом», поскольку действие через пустое пространство исключало всякий механизм передачи силы; он поражался тем, что Ньютон взял на себя тяжкий труд и выполнил громоздкие вычисления, которые не обосновывались — ничем, кроме математического принципа тяготения. Против чисто математического описания гравитации возражали и многие другие современники Ньютона, в том числе Лейбниц, который сразу, как только прочитал в 1690 г. ньютоновские «Начала», занял в отношении их резко критическую позицию и продолжал критиковать идею дальнодействия до самой своей смерти. Вольтер, возвратившись в 1727 г. с похорон Ньютона, с иронией заметил, что в Лондоне царит вакуум, тогда как в Париже ощущается пленум (пространство, заполненное тончайшей материей) — ведь во Франции все еще царствовала картезианская философия. Попытки объяснения феномена дальнодействия не прекращались до начала XX в.
И все же поразительные научные достижения Ньютона стали возможны только благодаря тому, что он всецело полагался на математическое описание даже в тех случаях, когда физическое понимание явления полностью отсутствовало. Вместо физического объяснения Ньютон дал количественную формулировку действия силы тяготения, полезную уже тем, что она имела поддававшийся проверке смысл. Именно поэтому Ньютон в первой книге «Начал» замечает: «Эти понятия должно рассматривать как математические, ибо я еще не обсуждаю физических причин и места нахождения сил». Ту же мысль он повторяет и в конце своего сочинения:
В наши намерения входило только установить величину и свойства этой силы по явлениям и применить то, что нам удалось открыть в некоторых простейших случаях, как законы, позволяющие математически оценивать действия силы в более сложных случаях… Мы говорим математически (курсив Ньютона) во избежание всяких вопросов о природе этой силы, которую мы не понимаем достаточно для того, чтобы строить какие-либо гипотезы…
([20], с. 29.)
В письме Ньютона преподобному Ричарду Бентли от 25 февраля 1692 г. есть такие строки:
То, что гравитация должна быть внутренним, неотъемлемым и существенным атрибутом материи, позволяя тем самым любому телу действовать на другое на расстоянии через
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.