Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - [74]

Шрифт
Интервал

:



Возможно, вам кажется, что десять выборщиков — это мало. На самом деле это много. 32 года из первых 36 лет истории нашей страны во главе государства стояли представители рабовладельческой Вирджинии. Единственное исключение составил Джон Адамс из Массачусетса, который не был переизбран в 1800 году… На самом деле он был так близок к победе, что эти десять выборщиков сыграли свою роль.

2. Почему принцип «победитель забирает все» победил и забрал все

В инаугурационной речи после тех горьких выборов 1800 года Томас Джефферсон взял примирительную ноту. Он сказал, что обе партии объединяют общие принципы, общие мечты. «Мы все федералисты, — сказал он. — Мы все республиканцы».

Однако посмотрите на Коллегию выборщиков в наши дни. Вы не увидите страну, которая гармонична, как инь и ян, и мирно хором распевает «Кумбайю». Карта пестрит красно-синим[248]. Калифорния безраздельно принадлежит демократам. Техас — республиканцам. Нет никакого «мы», исключительно «свои» и «чужие», что-то вроде настольной игры на двоих с невероятно высокими ставками.

Как же Коллегия выборщиков оказалась в таком положении?

Вот тут навострит уши математик. Конечно, мы позволим людям голосовать, но как объединить эти голоса и занести в таблицы? Какой математический процесс преобразует индивидуальные предпочтения в окончательный выбор избирателей?

Допустим, вы штат Миннесота. Вам нужно перемолоть три миллиона голосов граждан и получить на выходе десять голосов выборщиков. Как вы поступите?

Один из вариантов: распределить голоса выборщиков пропорционально результатам прямого голосования граждан. Кандидат, набравший 60 %, получает шесть голосов выборщиков[249]. Кандидат, набравший 20 %, получает два голоса. И так далее.



Хотя эта система логична, она не получила развития. На заре демократии отдельные штаты пробовали разные запутанные методы, например в Теннесси граждане избирали делегатов от своего административного округа, которые избирали выборщиков, которые избирали президента, но никто не видел необходимости распределять голоса пропорционально.

Альтернатива: распределять голоса выборщиков по географическому принципу. У вас есть десять выборщиков, почему бы не разбить ваш штат на десять избирательных округов и дать по одному голосу выборщика победителю в каждом округе?



Эта система пережила свой расцвет в 1790-е и начале 1800-х. С тех пор она канула в Лету.

Ее ближайший ныне действующий аналог — распределять голоса выборщиков в соответствии с избирательными округами на выборах в Палату представителей>{78}. Затем, поскольку в каждом штате на два выборщика больше, чем делегатов от этого штата в Палате представителей, голоса двух оставшихся выборщиков достаются победителю по штату в целом.



Сегодня эта своеобразная система практикуется всего в двух штатах: Небраска и Мэн. И больше нигде.

Так что, черт возьми, происходит в других 48 штатах? Они следуют радикальной схеме: победитель забирает все. В соответствии с этим подходом победитель прямого голосования в целом по штату получает все голоса выборщиков.



Принцип «победитель забирает все» имеет внятный подтекст: неважно, насколько победитель опередил проигравшего. В 2000 году Джордж Буш одержал победу во Флориде с преимуществом менее чем в 600 голосов. Избираясь на второй срок, он получил преимущество в 400 000 голосов. Но грандиозный отрыв был для него ничем не лучше зазора тоньше волоса. Принцип «победитель забирает все» сводит непрерывное разнообразие возможного распределения голосов к двум дискретным результатам, чего не могли ни предусмотреть, ни предвидеть 55 умников в Филадельфии.

Почему же тогда этот принцип практикуется в 96 % штатов?

Эта проблема напрямую относится к теории игр, математическому выбору стратегии. Для того чтобы понять текущую ситуацию, нам нужно проникнуть в сознание политика уровня штата.

Начнем с Калифорнии. Демократы имеют преимущество в Законодательном собрании штата. И — сюрприз-сюрприз — демократы, как правило, получают больше голосов на президентских выборах. Представьте, что у вас есть два варианта: пропорциональное распределение голосов выборщиков или принцип «победитель забирает все».

Ну, если вы демократ, то этот принцип дает фору вашей партии. Идти каким-либо иным путем означает подарить горстку голосов республиканцам. Зачем вообще раздумывать на эту тему?

В Техасе действует та же логика, только другая цветовая гамма. Этот принцип обеспечивает все голоса выборщиков республиканцам. Зачем же уступать драгоценные голоса сопернику?



Теоретически, если бы голоса выборщиков распределялись пропорционально на основе прямого голосования, ни одна партия не получила бы преимущество. Как будто оба дуэлянта сложили оружие. (Левая верхняя клетка на диаграмме.)

Однако это отнюдь не устойчивое равновесие. Как только противник отбросит свой револьвер, вы тут же можете снова подобрать свой. Если все штаты следуют одному и тому же принципу, мы скоро оказываемся в нижней правой клетке диаграммы, где, разумеется, сегодня пребывают 96 % штатов[250].

По описанию Коллегии выборщиков у вас могло сложиться впечатление, что границы штата имеют значение. Что пользоваться одинаковыми водительскими правами означает состоять в особом родстве


Еще от автора Бен Орлин
Время переменных. Математический анализ в безумном мире

«Время переменных» – веселая книга о математике вокруг нас. Двадцать восемь увлекательных рассказов, посвященных разным аспектам математики, сопровождаются забавными авторскими рисунками. Математический анализ для Орлина – это универсальный язык, способный выразить все, с чем мы сталкиваемся каждый день, – любовь, риск, время и, самое главное, постоянные изменения. Тема движения времени находит отражение и в названиях частей книги – «Мгновения» и «Вечности», и в ее персонажах – от Шерлока Холмса до Марка Твена и Дэвида Фостера Уоллеса.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.