Математика. Поиск истины. - [6]
Знание возникает, когда мозг, организуя и упорядочивая утверждения о физических объектах, выявляет закономерности. Именно такие закономерности порождает занятие математикой. Следовательно, математическая деятельность мозга приводит к истинному знанию реального мира, и математическое знание есть истина. По существу реальность доступна нам только в форме математики.
Гоббс с таким упорством отстаивал исключительное право математики на истину, что это вызвало возражение даже самих математиков. В письме к одному из самых выдающихся физиков своего времени Христиану Гюйгенсу математик Джон Валлис сообщал:
Наш Левиафан подвергает яростным нападкам и ниспровергает наши (да и не только наши) университеты и особенно священников, клир и всю религию, утверждая, будто христианский мир не достиг глубокого знания, которое не было бы ущербным и достойным осмеяния с точки зрения либо философии, либо религии, и люди не смогут якобы до конца постичь религию, если они не разбираются в философии, и философию, если не разбираются в математике.
То, что Гоббс всячески подчеркивал чисто физическое происхождение ощущений и ограниченные возможности мозга в процессе рассуждения, шокировало многих философов, привыкших видеть в головном мозге нечто большее, нежели массу механически действующей материи. Свое сочинение «Опыт о человеческом разуме» (1690) Джон Локк (1632-1704) начал с положения, близкого по духу Гоббсу, но явно противоречащего Декарту; он утверждал, что у человека нет врожденных идей — люди рождаются с разумом пустым, как чистые грифельные доски. Опыт, накапливаемый с помощью органов чувств, «пишет» на этих досках, порождая простые идеи. Некоторые простые идеи являются точным отражением свойств, присущих телам. Примерами таких свойств (Локк назвал их первичными) могут служить твердость, протяженность, форма (фигура), движение (или покой) и число. Эти свойства существуют независимо от того, воспринимает ли их кто-нибудь другой или не воспринимает. Другие идеи, порождаемые ощущениями, отражают вторичные свойства и представляют собой результат воздействия реальных свойств тел на разум, но не соответствуют последним. К вторичным свойствам относятся цвет, вкус, запах и звук.
Цель, которую поставил перед собой Локк в своем «Опыте», состояла в установлении границы между познаваемым и непознаваемым, «горизонта…, отделяющего освещенные стороны вещей от темных». При этом для Локка были равным образом неприемлемы взгляды и скептиков, «подвергавших сомнению все и ниспровергавших всякое знание потому, что некоторые вещи непознаваемы», и тех чрезмерно самоуверенных резонеров, занимавших противоположную позицию и полагавших, будто весь безбрежный океан бытия является «естественным и неоспоримым владением нашего разума, где все подвластно его решениям и ничто не может избегнуть его проницательности». В более конструктивном плане Локк намеревался установить основы знания и суждения, а также указать пути достижения истины или приближения к ней во всех вещах, доступных пониманию человеческого разума.
Поясняя замысел, или план, своего сочинения, Локк заметил, что видел цель своего «Опыта» в исследовании «происхождения, достоверности и объема человеческого познания вместе с основаниями и степенями веры, мнений и убежденности» ([4], с. 71). Следуя «историческому, ясному методу», Локк дал объяснение происхождения идей, затем показал, что познание — это понимание посредством этих идей, и, наконец, подверг анализу природу и основания веры и мнений.
Хотя разум не может создать простые идеи, он обладает способностью размышлять над простыми идеями, сопоставлять и объединять их, тем самым конструируя из простых идей сложные. В этом Локк расходится с Гоббсом. Кроме того, Локк полагал, что разум познает не саму реальность, а лишь идеи реальности и оперирует с ними. Для познания существенно отношение идей, например их непротиворечивость или противоречивость. Истина состоит в знании, соответствующем реальности вещей.
Основные математические идеи — плоды разума, но в конечном счете они восходят к опыту; тем не менее некоторые идеи невозможно проследить до реальных сущностей. Такие более абстрактные математические идеи разум конструирует из основных идей, повторяя, комбинируя и располагая последние в различном порядке. Эти абстрактные идеи порождаются восприятием, мышлением, сомнением, верой, рассуждением, желанием и знанием. Именно так мы приходим, например, к идее идеальной окружности. Следовательно, существует внутренний опыт, порождающий абстрактные идеи. Математическое познание универсально, абсолютно, достоверно и значимо. Это познание реально, хотя и состоит из идей.
Демонстративное (выводное, доказательное) познание соединяет эти идеи и таким образом устанавливает истины. Локк отдает предпочтение математическому познанию, ибо, по его мнению, идеи, которыми оно оперирует, наиболее ясны и, следовательно, надежны. Кроме того, математика устанавливает отношения между идеями, вскрывая необходимые связи между ними, а такие связи разум постигает лучше всего. Локк не только отдавал предпочтение математическому познанию реального мира, но и отрицал прямое физическое познание, ссылаясь на то, что многие факты относительно структуры материи, например физических сил, посредством которых объекты притягиваются друг к другу или отталкиваются, просто не ясны. Кроме того, считал он, так как мы познаем не реальную субстанцию внешнего мира, а лишь идеи, порождаемые ощущениями, физическое познание вряд ли можно считать удовлетворительным. Тем не менее Локк был убежден, что реальный мир, обладающий свойствами, описываемыми математикой, существует, как существует Бог и мы сами.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.