Математика. Поиск истины. - [33]

Шрифт
Интервал

К тому времени, когда Коперник взялся за проблему движений планет, арабские астрономы, стремясь повысить точность теории Птолемея, добавили к ней несколько эпициклов, и в таком усовершенствованном варианте этой теории для описания движения Солнца, Луны и пяти известных тогда планет требовалось уже семьдесят семь кругов. Многие астрономы, в том числе и Коперник, считали теорию Птолемея до неприличия сложной.

Гармония требовала в принципе более простой теории, нежели той или иной усложненной версии теории Птолемея с ее нагромождением кругов. Ознакомившись с трудами некоторых греческих авторов, главным образом Аристарха Самосского, Коперник пришел к заключению, что Земля, возможно, обращается вокруг неподвижного Солнца, одновременно вращаясь вокруг собственной оси. Эту возможность он и решил исследовать. Коперник был в какой-то степени заворожен греческой мыслью: подобно античным астрономам, он был убежден, что движения небесных тел должны быть круговыми или в крайнем случае представлять собой комбинации круговых движений, ибо круговое движение наиболее «естественно». Коперник считал также, что каждая планета должна двигаться по своему эпициклу с постоянной скоростью, в то время как центр каждого эпицикла должен двигаться с постоянной скоростью по несущей его окружности. Для Коперника такие принципы были своего рода аксиомами. Он даже нашел довод, в чем-то отражающий религиозно-мистический характер мышления XVI в.: по его мнению, причиной переменной скорости могла быть только переменная сила, Бог же, первопричина всех движений, постоянен.

В итоге долгих размышлений Коперник остановился на схеме деферента и эпицикла для описания движений небесных тел, но предложенный им вариант схемы обладал одной отличительной особенностью, имевшей первостепенное значение: Солнце находилось в центре каждого деферента, а Земля стала одной из планет и обращалась вокруг Солнца, одновременно вращаясь вокруг своей оси. Такое нововведение позволило Копернику значительно упростить традиционную схему.

Смысл введенных Коперником изменений удобнее всего пояснить на упрощенном примере. Коперник заметил, что если планета P обращается вокруг Солнца S (рис. 22) и Земля E также обращается вокруг Солнца, то положения планеты P, с точки зрения земного наблюдателя, будут одинаковы, находится ли он на вращающейся или на неподвижной Земле. Следовательно, движение планеты P в гелиоцентрической теории описывается одной окружностью, тогда как в геоцентрической теории для этого понадобились бы две окружности. Разумеется, движение планеты относительно Солнца не является строго круговым, и Коперник для более точного описания движений планеты P и Земли E вокруг Солнца к двум окружностям (изображенным на рис. 22) добавил эпициклы. Но и при наличии эпициклов, чтобы «объяснить весь хоровод планет», ему оказалось достаточно 34 кругов вместо 77. Таким образом, гелиоцентрическая картина мира позволила существенно упростите описание движения планет.

Рис. 22.

Интересно отметить, что примерно в 1530 г. Коперник кратко изложил свои идеи в небольшом трактате под названием «Малый комментарий», а капуанский кардинал Николай фон Шенберг обратился к нему с просьбой написать подробное изложение новой теории и отпечатать один экземпляр за счет кардинала. Однако Коперник опасался шума, который могла бы вызвать его работа, и на протяжении долгих лет воздерживался от публикации. Рукопись своего труда он доверил Тидеману Гизе, епископу кульмскому, который напечатал книгу с помощью профессора Виттенбергского университета Рётика (Георга Иоахима фон Лаухена). Лютеранский теолог Андреас Осиандер, взявший на себя хлопоты по печатанию книги, опасаясь осложнений, предпослал труду Коперника анонимное предисловие. В нем Осиандер утверждал, что новая теория представляет собой не более чем гипотезу, позволяющую вычислять движения небесных тел на основе геометрических принципов, и особо подчеркнул, что данная гипотеза не имеет никакого отношения к реальности. Тот же, кто примет за истину предназначавшееся совсем для других целей, добавлял Осиандер, расставаясь с астрономией, окажется еще большим глупцом, чем был, приступая к ее изучению. Разумеется, предисловие Осиандера отнюдь не отражало взглядов Коперника, считавшего движение Земли физической реальностью. Отпечатанный экземпляр своего сочинения Коперник получил, будучи тяжело парализованным после апоплексического удара. Вряд ли он прочитал его, ибо так и не оправился от болезни. Вскоре (1543) Коперник умер.

Гипотеза Коперника о неподвижном Солнце существенно упростила астрономическую теорию и вычисления, но точность основанных на ней предсказаний оставляла желать лучшего. Положения планет теория Коперника предсказывала с ошибкой до 10° (угловых градусов). Стремясь повысить точность, Коперник пытался варьировать комбинацию деферент — эпицикл, оставляя неподвижное Солнце в центре или поблизости от центра деферента. И хотя на этом пути он мало чего добился, его энтузиазм в отношении гелиоцентрической картины мира не ослаб.

Когда Коперник говорил о необычайных математических упрощениях, вытекающих из гелиоцентрической гипотезы, удовлетворение и энтузиазм его были поистине беспредельны. Ему удалось найти более простое математическое описание небесных движений, которому следует отдать предпочтение перед другим, ибо, подобно всем ученым эпохи Возрождения, Коперник был убежден, что «природа довольствуется простотой и не терпит пышного великолепия излишних причин». Коперник мог гордиться и тем, что осмелился задуматься о вещах, которые другие, в том числе Архимед, отвергали как заведомо абсурдные.


Еще от автора Морис Клайн
Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Библейские игры

Мог ли Авраам отказаться принести в жертву Исаака, как Бог приказал ему сделать, и при этом избежать Божьего гнева за отказ? Что бы случилось, если бы Ева не сорвала яблоко с древа познания добра и зла? Что было бы, откажись Адам попробовать это яблоко? Автор исследует мотивы поведения тех или иных библейских персонажей, анализирует рациональность их действий и обсуждает мораль их поведения, а также возможные варианты исходов тех или иных библейских сюжетов в зависимости от того, как их герои поступили бы в той или иной ситуации.


Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.