Математика и искусство - [12]

Шрифт
Интервал

В книге "Поиски истины", адресованной юношеству, Мигдал высказывает интереснейшую мысль о том, что "понятие красоты играет важную роль для проверки правильности результатов и для отыскания новых законов и является отражением гармонии, существующей в природе". Это, вообще, любимая мысль всех современных физиков, начиная от Альберта Эйнштейна и английского физика Поля Дирака, которому принадлежит афоризм о том, что красота является критерием истинности физической теории. Более того, красота являлась путеводной звездой в поисках истины и для Платона, и для Кеплера, к чему мы еще вернемся на страницах этой книги.

Отдавая должное признакам внешней красоты математических формул, Мигдал считает, что "гораздо важнее не внешние, а более глубокие признаки красоты результатов. Красиво, если выражение связывает в простой форме разнородные явления, если устанавливаются неожиданные связи. Одна из красивейших формул теоретической физики — это формула теории тяготения Эйнштейна, связывающая радиус кривизны пространства с плотностью материи... Требование красоты" не являясь абсолютным, играет важнейшую роль как для отыскания новых законов природы, так и для проверки полученных результатов".

Наконец, Мигдал анализирует понятие симметрии как источник красоты в физике. Следует сказать, что истинная роль симметрии в науке стала проясняться только в XX веке. В 1918 г. немецкий математик Эмми Иетер (1882-1935) доказала замечательную теорему, согласно которой каждому виду симметрии соответствует свой закон сохранения. Например, знаменитый закон сохранения энергии является следствием однородности времени, т. е. симметрии относительно сдвигов по времени. В 1963 г. американский физик-теоретик Юджин Пол Вигнер получил Нобелевскую премию по физике за исследования принципов симметрии, лежащих в основе взаимодействия элементарных частиц. Выдающаяся роль симметрии в искусстве известна давно: симметрия сопровождает искусство едва ли не с момента его зарождения. И вот в XX веке человечество убеждается в огромной роли симметрии в формировании законов природы. Таким образом, симметрия является едва ли не единственным общепризнанным критерием красоты как в науке, так и в искусстве. (Этот важный вопрос мы рассмотрим подробнее в главе 4.)

Геометрия есть познание всего сущего.

Платон

Нам остается ответить еще на один вопрос, который следует из заголовка этого параграфа: почему именно математика претендует на роль "первой красавицы" среди остальных наук?

Математика: прекрасное в науке

Конечно, проще всего было бы ответить на данный вопрос известным афоризмом "короля математиков" Карла Гаусса (1777-1855): "Математика — царица всех наук... Она часто снисходит до оказания услуг астрономии и другим естественным наукам, но при всех обстоятельствах первое место, несомненно, останется за ней". Однако ясно, что это не объяснение, а декларация, и, чтобы разобраться в существе дела, мы должны вновь спросить себя: что такое математика? Гораздо легче ответить на аналогичный вопрос биологу или геологу. Первый скажет, что биология — это наука о живой природе, а второй — что геология — это наука о недрах Земли. А вот у математики нет своего материального предмета исследования, его нельзя потрогать руками или увидеть глазами. Тем не менее значительная часть математических понятий и теорий родилась при изучении реальных явлений (всем известна история возникновения и развития арифметики и геометрии). Как это ни парадоксально, но именно математика в процессе своего развития лишилась материального предмета изучения, и это сделало ее всемогущественной наукой. Сегодня любой человек, даже совершенно далекий от математики, знает, что математика представляет собой могучую силу, сфера влияния которой практически не ограничена.

"Что такое математика?" — так называется книга американских математиков Р. Куранта и Г. Роббинса, которую мы рекомендуем всем, кто захочет увидеть математику во всем блеске ее красоты и могуществе ее приложений, ибо, как сказано в авторском введении, "и для специалистов, и для любителей не философия, а именно активные занятия математикой смогут дать ответ на вопрос: что такое математика?"

Тем не менее попробуем немного пофилософствовать. Известно классическое определение математики, данное Ф. Энгельсом: "Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира". Это определение указывает не только на предмет математики, но и на его происхождение — реальный мир. Однако за сто лет своего интенсивного развития математика ушла далеко вперед, у нее появились новые нетрадиционные разделы, и стало ясно, что данное определение нуждается в уточнении.

Математика: прекрасное в науке

Новое определение математики предложила группа французских математиков, объединившаяся под псевдонимом Никола Бурбаки, которая определяет математику как науку о математических структурах. К великому удовольствию любителей искусства, мы должны констатировать, что история повторяется: эстетику по-новому определяют как науку об эстетическом, а математику — как науку о математических структурах! Но не надо спешить иронизировать по этому поводу. Вспомним предостережение выдающегося американского математика Рихарда Куранта (1888-1972), данное им в статье "Математика в современном мире": "На вопрос "Что такое математика?" невозможно дать обстоятельный ответ на основе одних лишь только философских обобщений семантических предложений или с помощью обтекаемого газетно-журнального многословия. Так же как нельзя дать общее определение музыке или живописи: никто не может оценить эти виды искусства, не понимая, что такое ритм, гармония и строй в музыке или форма, цвет и композиция в живописи. Для понимания же сути математики еще в большей степени необходимо подлинное проникновение в составляющие ее элементы".


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.