Математика для любознательных - [5]
Принято думать, что невозможно обнаружить изменения размеров мира только при том условии, если все три его измерения подверглись соразмерному изменению, т. е. если мир изменил свою величину без искажения; всякое искажение мира - полагают обычно - не может ускользнуть от наших наблюдений. Однако это не так. Если бы, например, мир наш внезапно заменился другим миром, представляющим зеркальное отражение прежнего, - мы, проснувшись в таком мире, ничем не могли бы обнаружить произошедшей перемены. Мы писали бы левой рукой, выводя строки справа налево, наклоняя буквы налево - и вовсе не сознавали бы, что совершаем нечто необычное. Ведь мы различаем и только потому, что связываем правильное начертание с определенным направлением, - запоминаем, например, что полукруг должен быть обращен в правую сторону[6]. Но в новом, «зеркальном» мире место правой руки заняла левая, и потому мы неизбежно будем теперь считать правильным начертание. Короче говоря: отличить мир от симметричного с ним мира, если первый исчез и заменен вторым, - мы не в состоянии.
Более того: мы не заметили бы ни малейшей перемены в мире даже и в том случае, если бы все предметы увеличились (или уменьшились) в разных направлениях в неодинаковое число раз. Если мир изменяется таким образом, что все предметы увеличиваются, например, в восточном направлении, скажем, в 1000 раз, а в прочих направлениях остаются неизменными, то и такое чудовищное искажение прошло бы для нас совершенно незамеченным. Действительно, как мог бы я убедиться, что стол, за которым я сижу, вытянулся в восточном направлении в 1000 раз? Казалось бы, весьма простым способом: если прежняя его длина в этом направлении была один метр, то теперь она равна 1000 метров. Достаточно, значит, только произвести измерение. Но не забудем, что когда я поверну метровый стержень в восточном направлении, чтобы выполнить это измерение, стержень мой удлинится (как и все предметы мира) в 1000 раз, и длина стола в восточном направлении по-прежнему будет одинакова с длиною стержня; я буду считать ее, на основании проделанного измерения, равной 1 метру. Теперь понятно, почему мы никаким способом не в силах были бы обнаружить, что форма мира подверглась указанному искажению.
Германский математик проф. О. Дзиобек приводит в одной из своих статей еще более удивительные соображения.
«Представим себе зеркало с отражающей поверхностью произвольной кривизны - одно из тех уродующих зеркал, которые выставляются в балаганах для увеселения посетителей, забавляющихся своим карикатурным отражением. Обозначим реальный мир через А, а его искаженное изображение через В. Если некто стоит в мире А у рисовальной доски и чертит на ней линейкой и циркулем линии и фигуры, то уродливый двойник его в В занимается тем же делом. Но доска наблюдателя в А, на наш взгляд, - плоская, доска же в В - изогнутая. Наблюдатель в А проводит прямую линию, а отраженный наблюдатель в В - кривую (т. е. представляющуюся нам кривой). Когда в А чертится полный круг, то в В выполняется то же самое, но замкнутая линия мира В кажется нам не окружностью, а некоторой сложной кривой, быть может, даже двоякой кривизны. Когда наблюдатель в мире А берет в руки прямой масштаб с нанесенными на нем равными делениями, то в руках его двойника оказывается тот же масштаб, но для нас он не прямой, а изогнутый и при том с неравными делениями.
Допустим теперь, что В - не зеркальное отражение, а реально существующий объект. Каким образом мог бы наблюдатель мира В узнать, что его мир и собственное его тело искажены, если искажение одинаково захватывает все измерения, всю обстановку? Никаким. Более того: наблюдатель в В будет думать о мире А то же, что наблюдатель в А думает о мире В; он будет убежден, что мир А искажен. Свои линии он будет считать прямыми, а наши - искривленными, свою чертежную доску плоской, а нашу - изогнутой, свои масштабные деления равными, а наши - неравными. Между обоими наблюдателями и их мирами - полная взаимность. Когда наблюдатель в А, любуясь формами «своей» статуи Аполлона, взглянет на искаженное изваяние в мире В, он найдет его, конечно, безобразно изуродованным. Гармония форм исчезнет бесследно: руки чересчур длинны и тонки, и т. п. Но что сказал бы наблюдатель из мира В? Его Аполлон представился бы ему таким же совершенным, каким представляется нам наш; он будет превозносить его красоту и гармонию форм, а нашего Аполлона подвергнет уничтожающей критике: никакой пропорциональности, руки - бесформенные обрубки, и т. п.
Если предмет перед искажающей зеркальной поверхностью меняет свое положение - приближается, удаляется, отходит влево или вправо, - то изменяется и характер искажения. Искажения могут зависеть и от времени, если допустить, что кривизна отражающей поверхности непрестанно изменяется, порою исчезая вовсе (зеркало становится тогда плоским).
Отбросим теперь зеркало, которым мы пользовались только ради наглядности, и обобщим сказанное:
Если бы вся окружающая нас вселенная претерпела любое искажение, зависящее от места и времени, при условии, что искажение распространяется на все твердые тела, в частности на все измерительные инструменты и на наше тело, - то не было бы никакой возможности это искажение обнаружить».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.