Математический аппарат инженера - [5]

Шрифт
Интервал

Моделирование компонентов системы само по себе может представлять серьезные трудности, однако эта задача всегда проще, чем рассмотрение системы в целом. Кроме того, несмотря на огромное разнообразие систем, набор различных компонентов весьма ограничен, и их модели, полученные один раз в стандартной форме, могут затем многократно использоваться при моделировании сложных систем. В общем случае модели компонентов характеризуются нелинейными зависимостями. Однако многие задачи допускают их линеаризацию, что соответственно сильно упрощает и модели систем, которые в таких случаях описывается линейными уравнениями. Если параметры компонентов можно считать не зависящими от времени, то система представляет стационарной моделью

- 13 -

в виде дифференциальных уравнений с постоянными коэффициентами.

Параметры системы и приложенные к ней воздействия можно рассматривать как детерминированные или случайные величины, что приводит соответственно к детерминированным или стохастическим моделям. Выбор той или иной модели зависит от характера протекающих процессов и поставленной задачи исследования.

Стохастические модели имеют особенно важное значение при исследовании и проектировании больших систем со сложными связями и трудно учитываемыми свойствами. В подобных ситуациях близость математической модели к исходной системе усиливается приданием ей вероятностного или статистического характера, учитывающего существенные свойства и связи, которые не поддаются детерминированному описанию.

Реальные физические процессы протекают в непрерывно изменяющимся времени, которое является аргументом соответствующих им функций. Роль непрерывного аргумента в различных задачах исследования или проектирования могут играть и другие физические величины (расстояние, объем, масса, температура и т.п.). При этом математические модели, типичными представителями которых являются дифференциальные уравнения, также называют непрерывными. Однако во многих случаях целесообразно рассматривать состояние системы только для последовательности дискретных значений независимой переменной (времени), отвлекаясь от характера происходящих процессов в промежутке между этими значениями. Этот подход обслуживают различные типы дискретных моделей.

Важным типом дискретных моделей являются конечно-разностные дифференциальные уравнения, которые описывают процессы в исследуемой системе относительно конечных (не обязательно равных)приращений независимой переменной. Такая модель представляет собой как бы моментальные фотографии состояний системы, выполненные последовательно через некоторые промежутки времени (или другой независимой перемененной). Ясно, что точность моделирования тем выше, чем меньше приращения независимой переменной, но уменьшение интервалов между дискретными значениями неизбежно приводит к увеличению объема вычислений. Представление непрерывных систем дискретными моделями всегда связано с решением вопроса об оптимальном выборе шага дискретности как компромисса между точностью и простотой.

Для многих систем дискретность является основным свойством их функционирования. В некоторые моменты времени происходит переход их одного состояния в другое, последовательно которых представляет наибольший интерес, а процессы между этими состояниями либо отодвигаются на второй план, либо и вовсе не имеют

- 14 -

значения. В таких случаях дискретная модель представляет собой естественное отображение системы в том смысле, что дискретные моменты времени определяются изменением ее состояний. Более того, вместо времени (или другой независимой переменной) можно рассматривать последовательность состояний, различающихся каким-либо другим признаком. Типичным представителем дискретных моделей этого типа являются, например, конечные автоматы.

Для представления математических моделей широко используется аппарат теории множеств, матриц и графов. Соответственно различают теоретико-множественные, матричные и топологические модели. В последнее время в качестве математических моделей реальных объектов находят применение различные алгебраические структуры: группы, кольца, поля и т.п.

7. Математические методы. После того как математическая модель построена, дальнейшая работа состоит в применении соответствующих математических методов с целью получения необходимых характеристик данной модели, а значит. И исследуемого реального объекта. Большое разнообразие математических методов можно свести к тем основным видам: аналитическим, графическим и численным.

Получение характеристик модели в аналитической форме желательно во многих отношениях. Преде всего, представляется возможным провести исследование в общем виде, независимо от численных значений параметров системы. Аналитические зависимости позволяют использовать эффективные методы оптимизации и получить соотношения, характеризующие поведение системы при изменении ее параметров. Не менее важно и то, что при подстановке в аналитические выражения численных значений можно контролировать точность вычислений. Однако аналитические методы применимы только для простейших моделей. Так, общее разложение определителя системы шести линейных уравнений содержит сотни членов, а для десяти уравнений число членов определителя может достигать нескольких миллионов, решения алгебраических уравнений выше четвертой степени в общем случае не представимы в радикалах. Из-за громоздкости аналитических выражений или невозможности их получения значение аналитических методов в инженерной практике сильно ограничивается. В то же время аналитическая форма является основной при изложении и развитии математического аппарата в общем виде.


Рекомендуем почитать
Юный техник, 2015 № 11

Популярный детский и юношеский журнал.


Юный техник, 2015 № 09

Популярный детский и юношеский журнал.


Юный техник, 2015 № 01

Популярный детский и юношеский журнал.


Наука и техника, 2007 № 01 (8)

«Наука и техника» — ежемесячный научно-популярный иллюстрированный журнал широкого профиля.Официальный сайт http://naukatehnika.com.


Интернаука №16 ((часть2) 2020

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Как музыка стала свободной

"Как музыка стала свободной" представляет из себя захватывающую историю, в которой переплелись между собой одержимость, жадность, музыка, преступность и деньги. История эта рассказывается через визионеров и преступников, магнатов и подростков, создающих новую цифровую реальность. Это история о величайшем пирате в истории, самом влиятельном руководителе в музыкальном бизнесе, революционном изобретении и нелегальном сайте, который по своим размерам превосходил iTunes Music Store в четыре раза.Журналист Стивен Уитт отслеживает тайную историю цифрового музыкального пиратства, начиная с изобретения немецкими аудио-инженерами формата mp3, ведет читателя через завод в Северной Каролине, где печатались компакт-диски и с которого один из работников слил в сеть за десятилетие примерно 2 000 альбомов, к высоткам на Манхэттене, откуда музыкальным бизнесом правил могущественный Даг Моррис, монополизировавший мировой рынок рэп-музыки, и оттуда в глубины интернета - даркнет.