Математический аппарат инженера - [5]

Шрифт
Интервал

Моделирование компонентов системы само по себе может представлять серьезные трудности, однако эта задача всегда проще, чем рассмотрение системы в целом. Кроме того, несмотря на огромное разнообразие систем, набор различных компонентов весьма ограничен, и их модели, полученные один раз в стандартной форме, могут затем многократно использоваться при моделировании сложных систем. В общем случае модели компонентов характеризуются нелинейными зависимостями. Однако многие задачи допускают их линеаризацию, что соответственно сильно упрощает и модели систем, которые в таких случаях описывается линейными уравнениями. Если параметры компонентов можно считать не зависящими от времени, то система представляет стационарной моделью

- 13 -

в виде дифференциальных уравнений с постоянными коэффициентами.

Параметры системы и приложенные к ней воздействия можно рассматривать как детерминированные или случайные величины, что приводит соответственно к детерминированным или стохастическим моделям. Выбор той или иной модели зависит от характера протекающих процессов и поставленной задачи исследования.

Стохастические модели имеют особенно важное значение при исследовании и проектировании больших систем со сложными связями и трудно учитываемыми свойствами. В подобных ситуациях близость математической модели к исходной системе усиливается приданием ей вероятностного или статистического характера, учитывающего существенные свойства и связи, которые не поддаются детерминированному описанию.

Реальные физические процессы протекают в непрерывно изменяющимся времени, которое является аргументом соответствующих им функций. Роль непрерывного аргумента в различных задачах исследования или проектирования могут играть и другие физические величины (расстояние, объем, масса, температура и т.п.). При этом математические модели, типичными представителями которых являются дифференциальные уравнения, также называют непрерывными. Однако во многих случаях целесообразно рассматривать состояние системы только для последовательности дискретных значений независимой переменной (времени), отвлекаясь от характера происходящих процессов в промежутке между этими значениями. Этот подход обслуживают различные типы дискретных моделей.

Важным типом дискретных моделей являются конечно-разностные дифференциальные уравнения, которые описывают процессы в исследуемой системе относительно конечных (не обязательно равных)приращений независимой переменной. Такая модель представляет собой как бы моментальные фотографии состояний системы, выполненные последовательно через некоторые промежутки времени (или другой независимой перемененной). Ясно, что точность моделирования тем выше, чем меньше приращения независимой переменной, но уменьшение интервалов между дискретными значениями неизбежно приводит к увеличению объема вычислений. Представление непрерывных систем дискретными моделями всегда связано с решением вопроса об оптимальном выборе шага дискретности как компромисса между точностью и простотой.

Для многих систем дискретность является основным свойством их функционирования. В некоторые моменты времени происходит переход их одного состояния в другое, последовательно которых представляет наибольший интерес, а процессы между этими состояниями либо отодвигаются на второй план, либо и вовсе не имеют

- 14 -

значения. В таких случаях дискретная модель представляет собой естественное отображение системы в том смысле, что дискретные моменты времени определяются изменением ее состояний. Более того, вместо времени (или другой независимой переменной) можно рассматривать последовательность состояний, различающихся каким-либо другим признаком. Типичным представителем дискретных моделей этого типа являются, например, конечные автоматы.

Для представления математических моделей широко используется аппарат теории множеств, матриц и графов. Соответственно различают теоретико-множественные, матричные и топологические модели. В последнее время в качестве математических моделей реальных объектов находят применение различные алгебраические структуры: группы, кольца, поля и т.п.

7. Математические методы. После того как математическая модель построена, дальнейшая работа состоит в применении соответствующих математических методов с целью получения необходимых характеристик данной модели, а значит. И исследуемого реального объекта. Большое разнообразие математических методов можно свести к тем основным видам: аналитическим, графическим и численным.

Получение характеристик модели в аналитической форме желательно во многих отношениях. Преде всего, представляется возможным провести исследование в общем виде, независимо от численных значений параметров системы. Аналитические зависимости позволяют использовать эффективные методы оптимизации и получить соотношения, характеризующие поведение системы при изменении ее параметров. Не менее важно и то, что при подстановке в аналитические выражения численных значений можно контролировать точность вычислений. Однако аналитические методы применимы только для простейших моделей. Так, общее разложение определителя системы шести линейных уравнений содержит сотни членов, а для десяти уравнений число членов определителя может достигать нескольких миллионов, решения алгебраических уравнений выше четвертой степени в общем случае не представимы в радикалах. Из-за громоздкости аналитических выражений или невозможности их получения значение аналитических методов в инженерной практике сильно ограничивается. В то же время аналитическая форма является основной при изложении и развитии математического аппарата в общем виде.


Рекомендуем почитать
Глубоководные аппараты (вехи глубоководной тематики)

Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.