Математический аппарат инженера - [17]

Шрифт
Интервал

Вес можно приписывать не только ребрам и дугам, но и вершинам. Например, вершины, соответствующие населенным пунктам на карте автомобильных дорог, могут характеризоваться количеством мест в кемпингах, пропускной способностью станций техобслуживания. Вообще, вес вершины означает любую характеристику соответствующего ей объекта (атомный вес элемента в структурной формуле, цвет изображаемого вершиной предмета, возраст человека и т. п.).

- 47 -

Особое значение для моделирования физических систем приобрели взвешенные ориентированные графы, названные графами потоков сигналов или сигнальными графами. Вершины сигнального графа отождествляются с некоторыми переменными, характеризующими состояние системы, а вес каждой вершины означает функцию времени или некоторые величины, характеризующие соответствующую переменную (сигнал вершины). Дуги отображают связи между переменными, и вес каждой дуги представляет собой численное или функциональное отношение, характеризующее передачу сигнала от одной вершины к другой (передача дуги). Сигнальные графы находят широкое применение в теории цепей и систем, а также во многих других областях науки и техники.

4. Типы конечных графов.Если множество вершин графа конечно, то он называется конечным графом. В математике рассматриваются и бесконечные графы, но мы заниматься ими не будем, так как в практических приложениях они встречаются редко. Конечный граф G = (V, E), содержащий р вершин и q ребер, называется (р, q)-графом.

Рис. 9. Типы графов:

а - псевдограф; б - полный граф (шестиугольник); в - двудольный граф (биграф).

Пусть V = { v>1, v>2, ..., v>p } и E = { e>1, e>2, ..., e>q } - соответственно множества вершин и ребер (р, q)-графа. Каждое ребро e>k ∈ E соединяет пару вершин v>i ∈ V являющихся его концами (граничными вершинами). Для ориентированного ребра (дуги) различают начальную вершину, из которой дуга исходит, и конечную вершину, в которую дуга заходит. Ребро, граничными вершинами которого является одна и та же вершина, называется петлей. Ребра с одинаковыми граничными вершинами являются параллельными и называются кратными. В общем случае граф может содержать и изолированные вершины, которые не являются концами ребер и не связаны ни между собой, ни с другими вершинами. Например, для (5, 6)-графа на рис. 9, а V={ v>1, v>2, v>3, v>4, v>5 }; Е= {e>1, e>2, e>3, e>4, e>5} ребра e>2 и e>3 параллельны, ребро e>6 является петлей, а v>4 - изолированная вершина.

- 48 -

Число ребер, связанных с вершиной v>i (петля учитывается дважды), называют степенью вершины и обозначают через δ(v>i) или deg (v>i). Так, для графа на рис. 9, а δ(v>1) =1, δ(v>2) = 4 и т. д. Очевидно, степень изолированной вершины равна нулю δ(v>4) = 0). Вершина степени единицы называется концевой или висячей вершиной ( δ(v>1) =1). Легко показать, что в любом графе сумма степеней всех вершин равна удвоенному числу ребер, а число вершин нечетной степени всегда четно. В орграфе различают положительные δ>+(v>i) и отрицательные δ>-(v>i) степени вершин, которые равны соответственно числу исходящих из v>i и заходящих в v>i дуг. Например, для вершины d орграфа (см. рис. 9, а) имеем δ>+(d) = 2 и δ>-(d) = 3. Очевидно, суммы положительных и отрицательных степеней всех вершин орграфа равны между собой и равны также числу всех дуг.

Граф без петель и кратных ребер называют простым или обыкновенным. Граф без петель, но с кратными ребрами называют мультиграфом. Наиболее общий случай графа, когда допускаются петли и кратные ребра, называют псевдографом. Так, граф на рис. 7,б - это мультиграф, а на рис. 9, а - псевдограф. Если граф не имеет ребер (Е = ∅), то все его вершины изолированы (V ≠ ∅), и он называется пустым или нульграфом. Простой граф, в котором любые две вершины соединены ребром, называется полным (на рис. 9, б приведен пример полного графа с шестью вершинами). Если множество вершин V простого графа допускает такое разбиение на два непересекающихся подмножества V>1 и V>2 (V>1 ∩ V>2 = ∅ ), что не существует ребер, соединяющих вершины одного и того же подмножества, то он называется двудольным или биграфом (рис. 9, в). Ориентированный граф считается простым, если он не имеет строго параллельных дуг и петель.

Граф, степени всех вершин которого одинаковы и равны r, называется однородным (регулярным) r-й степени. Полный граф с n вершинами всегда однородный степени n-1, а пустой граф-однородный степени 0. Граф третьей степени называют кубическим. Он обладает рядом интересных свойств и, в частности, всегда имеет четное число вершин.

5. Смежность.Две вершины v>i и v>i ∈ V графа G = (V, Е) называются смежными, если они являются граничными вершинами ребра e>k ∈ E. Отношение смежности на множестве вершин графа можно определить, представив каждое ребро как пару смежных вершин, т. е. e>k = (v>i, v>j) k = 1, 2, …, q. Для неориентированных графов такие пары неупорядочены, так что e>k = (v>i, v>j) = (v>j, v>i) а для орграфов — упорядочены, причем и, v>i и v>j означают соответственно начальную и конечную вершины дуги e>k. Петля при вершине v>i , в обоих случаях представляется неупорядоченной парой (v>j, v>i). Ясно, что множество вершин V вместе с определенным на нем отношением смежности полностью определяет граф.


Рекомендуем почитать
Глубоководные аппараты (вехи глубоководной тематики)

Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.