Maple 9.5/10 в математике, физике и образовании - [8]

Шрифт
Интервал

TIME = 255.688

А в Maple 9.5 тот же пример дал время меньше 7 с:

>> t := time() :add(1/k^2, k=1..100000): TIME=time()-t;

TIME = 6.500

В данном случае резкое ускорение вычислений обусловлено применением новой библиотеки целочисленной арифметики — GNU Multiple Precision (GMP).

Доброго обывателя в области математики поражает способность Maple выполнять точные арифметические операции с целыми числами, которые не помешаются в строку. При этом знак \ переносит вывод на следующую строку, а знак % подставляет в строку ввода результат предшествующей операции:

>> 200!+123456789;

031904170324062351700858796178922222789623703897374720 \
000000000000000000000000000000000000000123456789

>> %-200!;

123456789

Но Maple 9.5 идет еще дальше — почти мгновенно (особенно при повторе примера) система вычисляет факториал 100000:

>> t : = time():bigFactorial := 100000!:TIME=time()-t;

TIME = .609

>> t := time():bigFactorial := 100000!:TIME=time()-t;

TIME = 0

Заметно повышена и скорость многих сложных вычислений. Например, на вычисление внушительного определенного интеграла

>> Int( х^n*ехр(-х^n) + Sum( cos(k*x)/k, k=1..n), х=0..1);


в стократно повторяющемся цикле, Maple 9.5 затрачивает чуть меньше трех сотых секунды на каждое вычисление интеграла:

>> t := time():

>for i from 1 to 100 do

> evalf(Int(х^i*ехр(-x^i) + add(cos(k*x)/k, k=0..i), x=0..1)):

>end do:

>TIME=time()-t;

TIME = 2.922

В следующем примере вычисляется время, которое нужно для создания большой матрицы случайных чисел с помощью пакета расширения LinearAlgebra:

>> М := LinearAlgebra:-RandomMatrix(500);


>> timeconsumed = time(type(M, 'Matrix'(algebraic)));

time_consumed = 0.031

Повышение скорости вычислений обеспечено усовершенствованием алгоритмов численных вычислений (например, GNU) и применением подпрограмм национальной группы алгоритмов NAG — общепризнанных в области быстрых вычислений при решении задач линейной алгебры. Кстати, выше была приведена первая программа на Maple-языке программирования, использующая конструкцию цикла.

Читатели книги [23], описывающей предшествующую реализацию Maple 9, обратят внимание на то, что данные по скорости выполнения операций у Maple 9.5 лишь немного отличаются от приведенных для Maple 9, причем в ту или иную сторону. Это позволяет считать их практически равноценными.

Любопытно отметить, что последний пример в Maple 10 дал при первом пуске время 0.078 с, а при втором 0.015. Это говорит о том, что слишком щепетильно относиться к подобным тестам не стоит. Они дают лишь порядок величин, характеризующих скорость вычислений.

1.3. Интерфейс пользователя Maple 9.5

1.3.1. Окно системы

Как у всех приложений под Windows интерфейс Maple 9.5 имеет ряд характерных элементов, отчетливо видимых на рис. 1.2, 1.3 и 1.4:

• строка заголовка (сверху);

• строка главного меню;

• главная панель инструментов;

• контекстная панель инструментов, вид которой зависит от режима работы с Maple 9.5;

• окно ввода и редактирования документов;

• строка состояния (в самом низу окна);

• панели ввода специальных математических символов (см. ниже).

Пользовательский интерфейс Maple 9.5 позволяет готовить документы, содержащие одновременно текстовые комментарии, команды входного языка (с возможным преобразованием их в естественную математическую форму нажатием кнопки с буквой «х»), результаты вычислений в виде обычных математических формул и графические данные. Это обеспечивает понятное представление исходных данных и результатов вычислений, а также удобство их повторного использования.

Пользователь Maple 9.5 (как и ряда других математических систем) работает с документами, которые являются одновременно описаниями алгоритмов решения задач, программами и результатами их исполнения. Все данные команды и результаты размещаются в соответствующих ячейках. Графические построения выполняются как в ячейках документа, так и в отдельных окнах, и имеют свои меню для оперативного управления параметрами.

1.3.2. Меню системы

Наиболее полные возможности управления предоставляет меню системы Maple 9.5, расположенное под строкой заголовка — см. рис. 1.4 с открытой позицией View меню. Ниже дан перечень позиций меню, доступных при наличии открытого документа и стандартном виде интерфейса (см. рис. 1.2):

File — работа с файлами и печатью документов;

Edit — команды редактирование документа и операции с буфером обмена;

View — управление видом пользовательского интерфейса;

Insert — операции вставки;

Format — операции задания форматов;

Tools — доступ к инструментальным средствам;

Window — управление окнами;

Help — работа со справочной системой.

При классическом интерфейсе позиция Tools меню отсутствует, но есть другая позиция меню:

Spreadsheet — операции задания таблиц.

В позиции Tools меню стандартного интерфейса имеется доступ к ряду новых средства системы Maple 9.5, прежде всего к маплетам (maplets). Это надо учитывать при выборе интерфейса, с которым лучше работать.

В целом меню Maple 9.5 контекстно-зависимое и некоторые команды в позициях меню могут быть не активными. Такие команды представлены нечеткими серыми буквами, тогда как активные команды прописаны четкими черными буквами.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.