Maple 9.5/10 в математике, физике и образовании - [34]
Рис. 1.70. Подготовка к исполнению графической функции
В этом окне можно окончательно скорректировать данные для построения графика или согласившись с данными уже имеющимися нажать кнопку OK. Будет построен график трех функций, что показано на рис. 1.71. Обратите внимание на стрелку, которая сопровождает исполнение команды Evaluate at a Point.
Рис. 1.71. Построение графика после исполнения графической функции
1.17.16. Классический интерфейс Maple 10
Работа Maple 10 в варианте с классическим интерфейсом ничем не отличается от таковой для предшествующих версий системы Maple. В этом нетрудно убедиться, сравнив рис. 1.72 с рис. 1.20.
Рис. 1.72. Работа с Maple 10 в варианте с классическим интерфейсом
Учитывая данное обстоятельство, подавляющее большинство примеров в этой книге дано в варианте классического интерфейса, что позволяет использовать их не только для разбора возможностей Maple 10, но и Maple 9.5 и даже более ранних версий. Однако следует помнить о следующих особенностей применения системы Maple:
• работа с классическим интерфейсом требует меньшего объема оперативной памяти;
• у различных версий Maple возможно существенное расхождение в формах записи результатов символьных операций;
• файлы, записанные в более поздних версиях могут не считываться и не работать в более поздних версиях (поэтому все файлы на диске, за редким исключением) записаны в формате Maple 9.5;
• строковые комментарии с символами кириллицы, записанные в варианте классического интерфейса, не воспроизводятся корректно в варианте стандартного интерфейса (однако вводить символы кириллицы в последнем можно).
Это также говорит в пользу применения классического интерфейса или, если желательно пользоваться всеми новыми возможностями Maple 9.5/10 переходить к варианту стандартного интерфейса.
1.17.17. Применение шаблонов (Templates) в Maple 10
Мы уже отметили возможность работы с документами Maple 10 в двух режимах подготовки документов — Document Mode и Worksheet Mode. В подменю New позиции File меню Maple 10 есть еще один новый режим подготовки документов — с помощью шаблонов Templates — рис. 1.73.
Рис. 1.73. Подготовка к открытию окна шаблонов
Исполнение команды Templates выводит окно шаблонов, показанное на рис. 1.74. По виду окно шаблонов напоминает окно справки. Оно содержит дерево разделов в левой части и информационное окно в правой части. В данном случае выбрана тема построения трехмерного графика функции двух переменных. В информационном окне показано задание функции и построение графика. В отличие от справки в шаблонах примеры «живые» — видно, например, построение графика.
Рис. 1.74. Основное окно шаблоновВ верхней части окна видны три большие кнопки:
• Copy Task to Clipboard — копирование содержимого информационного окна в буфер промежуточного хранения Windows XP;
• Insert Default Content — включение в окно документа всего содержимого информационного окна;
• Insert Minimal Content — включение в окно документа содержимого информационного окна в минимальном варианте (без текстовых комментарий — см. пример в окне документа на рис. 1.73).
С их помощью содержимое шаблона можно перенести в буфер или в окно документа. Если установлен флаг опции «Insert into New Worksheet», то содержимое шаблона переносится в новое открывающееся окно, иначе в текущее окно. При активизации первых двух кнопок в буфер или документ копируется полное содержание шаблона, а при активизации последней кнопки в документ копируется минимальное содержимое шаблона (без текстовых комментарий). В результате копирования шаблона в окно документа получается полноценный документ по теме шаблона, который пользователь может редактировать (изменять) или дополнять. Это особенно удобно при подготовке учебных материалов по работе с Maple 10.
1.17.18. Графическим калькулятор Maple 10
Практика показала, что часто Maple использовался для довольно простых расчетов и построения графиков простых зависимостей. Это напоминало стрельбу из пушки по воробьям. Поэтому разработчики Maple включили в состав системы довольно мощный научный графический калькулятор. При его запуска появляется окно, показанное на рис. 1.75 для опции построения графика функции sin(x)/x.
Рис. 1.75. Графический калькулятор системы Maple 10
Как большинство микрокалькуляторов виртуальный калькулятор системы Maple 10 рассчитан на интуитивное применение. Трудно предположить, что владеющий системой Maple даже на начальном уровне пользователь будет использовать калькулятор для решения серьезных задач, более сложных, чем чем подсчет полученной заработной платы или построение графиков простейших функций.
В связи с этим подробное описание калькулятора лишено смысла. Уместно лишь отметить, что возможности решения математических (и особенно аналитических) задач у программного калькулятора системы Maple 10 намного меньше, чем у специальных калькуляторов с символьными вычислениями фирм Texas Instruments, Casio и Hewlett Packard, описанных в [3].
Глава 2
Типы данных и работа с ними
Системы компьютерной математики, как и любые другие программные средства, работают с
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.