Maple 9.5/10 в математике, физике и образовании - [31]
Рис. 1.51. Примеры вычислений в Maple 10 с автоматической нумерацией их результатов
1.17.7. Новации интерфейса Maple 10
Стандартный интерфейс Maple 10 (рис. 1.49 и 1.51), по сравнению с интерфейсом Maple 9.5, претерпел значительные изменения — он стал типичным для приложений современной операционной системы Windows ХР. Обратите внимание на то, что кнопки главной палитры (на рис. 1.49 она показана слева) сделаны объемными и округлыми. Главная палитра содержит добрых два десятка палитр, представленных названиями кнопок главной палитры.
Область палитр может меняться в размерах путем перенесения на новое место вертикальной линии раздела области палитр и области документа. Для такого переноса достаточно уцепиться курсором мыши за линию раздела и начать ее переносить при нажатой левой клавише мыши. В позиции меню View меню есть команда Palettes, содержащая три важные команды:
• Arrange Pallets — вывод окна конструирования областей палитр;
• Expand Docks — открытие закрытых палитр;
• Collapse Docks — закрытие областей палитр для получения максимального размера области текущего документа.
В отличии от Maple 9 в меню Maple 10 сразу представлены все позиции, но часть из них не активна, если в документе нет относящихся к ним данных. К поначалу не активным позициям меню относятся:
• Table — работа с обычными таблицами;
• Plot — работа с графическими объектами;
• Spreadsheet — работа с электронными таблицами;
• Sketh — работа графическими набросками.
1.17.8. Новые палитры математических символов
В Maple 10 заметно повысилось удобство ввода и представления математических формул — вплоть до самых сложных. В частности, это достигнуто применением нового редактора математических выражений и новых палитр математических символов. Каждая палитра открывается активизацией черного треугольника в левой части ее кнопки. Если острие треугольника обращено вправо, то палитра закрыта, а если острие обращено вниз, то палитра открыта (см. рис. 1.51 на котором открыты палитры выражений Expression и размерных величин Units).
Палитры Maple 10 позволяют вводить огромное число операторов, функций и иных элементов математических выражений (около 1000 символов). О полноте палитр можно судить по палитре математических операторов, показанной на рис. 1.52. В ней представлено 99 различных операторов. Ввиду очевидности использования палитр, другие палитры не описываются и читатель может ознакомиться с ними сам.
Рис. 1.52. Палитра математических операторов
Среди палитр стоит обратить внимание на палитру Symbol Recognition (Создание Символа), которая позволяет создать любой графический символ, просто нарисовав его. Эта возможность может заинтересовать математиков, работающих в новых областях математики, где математическая символика еще не установилась. Среди средств палитр можно найти и средства для создания маплетов.
Построение выражений с помощью палитр заметно облегчает этот процесс. Разумеется, можно вводить выражения в строки ввода и обычным путем, используя известный синтаксис операторов и функций и правила конструирования выражений, особенно для опытного пользователя уже имеющего опыт работы с предшествующими версиями системы Maple.
Хотя число палитр в Maple 10 резко увеличено в сравнении с Maple 9 оно даже больше того, что присутствует по умолчанию. Команда Arrange Pallets, о которой уже говорилось, выводит окно редактора расположения палитр, показанное на рис. 1.53.
Рис. 1.53. Окно редактора расположения палитр
В верхней части этого окна расположены все 26 палитр, разделенных на три группы: палитры букв, математических знаков и выражений. Под ними имеются две области палитр (левая и правая) которые можно заполнять нужными пользователю палитрами, просто перемещая их мышью. Кнопки справа от этих областей позволяют очищать области палитр и показывать все палитры. Кнопка Default задает набор палитр по умолчанию.
Для русскоязычных пользователей приятным сюрпризом стала палитра с символами кириллицы. Впрочем, обольщаться ее пользой не стоит — символы кириллицы можно вводить с клавиатуры ПК с русифицированными операционными системами. Но, увы, обработка их и задание русскоязычных надписей в маплетах не поддерживаются.
1.17.9 Новые возможности графики Maple 10
В Maple 10 заметно улучшены средства визуализации графики. Порой это заметно по массе «мелочей», определяющих вид графиков. Примером может служить рисунок рис. 1.49, строящий график с полулогарифмическим масштабом с частично построенной масштабной сеткой.
Рис. 1.54 показывает построение того графика, но теперь полулогарифмический масштаб задан для оси у. Для этого параметр [1] в опции axis заменен на [2]. Если график выделен, то становится активной новая позиция меню Plot. Она открывает обширные возможности форматирования (модификации) уже построенного графика, например, замены стиля линий, изменения вида точек (если они есть), изменения толщины и цвета линий графика и т.д.
Рис. 1.54. Документ с построением графика и открытой позицией меню Plot
На рис. 1.55 показан пример изменения толщины линии графика. При исполнении команды Plot→Line→Line Width… открывается окно задания толщины линии. Ее можно задать явно числом или с помощью линейного регулятора. Нажатие кнопки OK фиксирует выбранную толщину линии.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.