Магнит за три тысячелетия - [47]

Шрифт
Интервал

то он охладится, и в состоянии перенасыщения ничтожной причины достаточно для

конденсации пара. Вот почему камеру Вильсона тщательно очищают от пыли,

оберегают от сотрясений. Теперь достаточно одной-единственной заряженной частице

пролететь через камеру, чтобы ее путь был отмечен туманным следом. Трек надо

осветить, сфотографировать, и визитная карточка гостьи попадет в распоряжение

ученых.

Камера Вильсона появилась, а тем временем А.Демистр по идее Дж. Дж. Томсона

построил первый масс-спектрограф (1918). Через год Ф.Астон создал уже хороший

аппарат: частицы не только пролетали зазор конденсатора и пятнышко между

полюсами магнита, но, пройдя серию узкоориентированных щелей, попадали на

фотопластинку.

Но вот магнит "встретился" с камерой Вильсона, и помог этой встрече П.Л.Капица!

Дело в том, что паровая камера не могла ответить на вопрос, какая же частица

пролетела. Камера Вильсона предупреждала о появлении частиц, не "опознавая" их.

Выход из этого положения был найден советским физиком П.Л.Капицей,

опубликовавшим в 1923 г. в журнале Кембриджского философского общества небольшую

статью, в которой описывал некоторые эксперименты по наблюдению, следов альфа-

частиц в камере Вильсона. Установка П.Л.Капицы представляла собой камеру

Вильсона, помещенную в сильное магнитное поле. Что это давало? Мы знаем о том,

что в магнитном поле любая заряженная частица движется по кривой, радиус которой

обратно пропорционален напряженности магнитного поля и прямо пропорционален

массе частицы и ее скорости. Таким образом, зная напряженность магнитного поля и

измерив радиус трека частицы в камере Вильсона, можно узнать ее массу и энергию.

Идея П.Л.Капицы о магнитной камере Вильсона нашла приверженцев. Среди них был и

американец К.Андерсон, который в 1932 г. поместил камеру Вильсона внутри крупного

электромагнита со стальным сердечником и полем около 2 Тл. Полюсы магнита были

сконструированы таким образом, что создаваемое магнитное поле оказалось

совершенно однородным, т. е. во всех точках камеры поле было одинаковым. Это

давало возможность более точно определять энергию частиц. Андерсона кроме

энергии интересовали еще и знаки заряда частицы. При заданном направлении

магнитного поля и известном направлении движения положительно заряженные частицы

будут отклоняться в одну сторону, а отрицательно заряженные — в другую.

Исследуя вильсонограммы (так иногда называют фотографии следов в камере

Вильсона) космических лучей, Андерсон внезапно увидел поразительную вещь:

частица, по импульсу аналогичная электрону, отклонялась магнитным полем так, как

если бы она была заряжена положительно. Андерсон твердо знал, что электрон так

отклоняться в магнитном поле не может, поскольку он обладает отрицательным

зарядом и должен отклоняться в противоположную сторону.

Противоречия можно было бы примирить, если бы приписать этому "электрону"

положительный заряд. Существование "антиэлектрона", обладающего положительным

зарядом, было предсказано в 1928 г. молодым английским физиком Полем Дираком на

основе анализа "квантовых" уравнений движения электрона.

Частица, открытая Андерсоном, действительно оказалась антиэлектроном, или, как

его теперь называют, позитроном. Это была первая обнаруженная человеком частица

из антимира. Ее открытие было бы крайне затруднительно без сильного магнитного

поля, без мощного магнита. Так, академик Д.В.Скобельцын, напавший на след

позитрона гораздо раньше Андерсона, упустил его, поскольку магнит Скобельцына

давал поле лишь 0,3 Тл.

Камера Вильсона была незаменимым лабораторным устройством до тех пор, пока

энергии (скорости) излучаемых в ней частиц были относительно невелики. Но в 50-х

годах в СССР, США и других странах вступили в строй гигантские ускорители,

способные сообщать частицам колоссальную скорость. Энергия частиц была при этом

столь велика, что они беспрепятственно пронизывали камеру Вильсона и почти не

отклонялись магнитным полем. Это и не удивительно — камера Вильсона заполнена

газом, почти не представляющим собой преграды для частиц. Частицы столь больших

энергий необходимо было исследовать по-другому.

Камеру Вильсона Капица "доделал" основательно, но резервы ее улучшения уже

иссякали. В 1948 г. Нобелевскую премию получил П.Блэкетт, который пристроил к

камере Вильсона множество счетчиков элементарных частиц, которые при

необходимости включали камеру и отключали ее, когда она простаивала без дела. Но

гораздо более серьезное предложение сделал американец, физик Дональд Глезер,

ученик Андерсона. И если Андерсон открыл позитрон-антиэлектрон, то заслуга

Глезера была не меньше: он открыл "антикамеру Вильсона" — пузырьковую камеру.

Поучительна история этого открытия. Поучительна потому, что она еще раз

убедительно показывает, что человек, одержимый какой-то идеей, способен видеть в

известных вещах только ему одному понятные явления, улавливать лишь для него

очевидные ассоциации, приводящие в конце концов к открытию.

Дональд Глезер в течение долгого времени мучительно искал материал, твердый или

жидкий, находящийся в таком неустойчивом равновесии, которое могла бы нарушить

даже одна-единственная атомная частица. В этом случае частица, непредставимо


Еще от автора Владимир Петрович Карцев
Приключения великих уравнений

История познания человеком электричества полна неожиданностей и драматизма. Среди «делавших» эту историю мы найдем людей разных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы.В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества… Первое и второе издания книги, вышли в издательстве «Знание» в 1970 и 1978 гг.Книга рассчитана на массового читателя.


Ньютон

Книга известного советского учёного и писателя В. П. Карцева представляет собой первое на русском языке научно-художественное жизнеописание одного из величайших мыслителей мира — английского математика, физика, механика и астронома Исаака Ньютона, оказавшего воздействие на всё развитие науки вплоть до нашего времени. Книга построена на обширном документальном материале, отечественном и зарубежном. Она содержит также широкое полотно общественной и научной жизни Англии конца XVII — первой половины XVIII века.Рецензенты: доктор физико-математических наук, профессор В. В. Толмачёв, кандидат филологических наук, член СП СССР Б. Н. Тарасов.


Кржижановский

Среди тех, кто рядом с Лениным прошел весь путь борьбы, ссылки и революции, был его ближайший друг Глеб Максимилианович Кржижановский. Инженер по образованию и поэт в душе, автор «Варшавянки», после победы Октября Г. М. Кржижановский весь пыл революционера, знания и талант отдал созданию единого Государственного плана развития страны. В осуществлении плана ГОЭЛРО, «второй программы партии», весь мир впервые зримо увидел социализм. Став вице-президентом Академии наук СССР, Г. М. Кржижановский активно боролся за то чтобы повернуть академию лицом к жизни, промышленности, сельскому хозяйству, к построению нового общества.


Максвелл

Когда нескольких видных ученых попросили назвать, каковы, по их мнению, три величайших физика всех времен, мнения разделились, но ни один не забыл Максвелла.И действительно, трудно переоценить значение работ этого поистине гениального человека, чьи исследования не только легли в основу современной радио- и телевизионной техники, но и стали краеугольным камнем современного понимания материи.


Рекомендуем почитать
Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Разум побеждает: Рассказывают ученые

Авторы этой книги — ученые нашей страны, представляющие различные отрасли научных знаний: астрофизику, космологию, химию и др. Они рассказывают о новейших достижениях в естествознании, показывают, как научный поиск наносит удар за ударом по религиозной картине мира, не оставляя места для веры в бога — «творца и управителя Вселенной».Книга рассчитана на самые широкие круги читателей.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.