Магнит за три тысячелетия - [24]

Шрифт
Интервал

А (амплитуда тока 30 тыс. А), отключающий цепь за 0,0001 с. Этот выключатель сам

по себе — подлинное произведение инженерного искусства.

Соленоид, на который обрушился колоссальный ток короткого замыкания генератора,

представлял собой катушку из медной проволоки квадратного сечения. В последующих

экспериментах медь была заменена сплавом меди с кадмием, обладающим большей

механической прочностью при несколько повышенном электросопротивлении. Когда ток

генератора проходил через катушку, в ней развивались грандиозные механические

усилия, достигающие нескольких десятков тонн. Чтобы эти усилия не разорвали

обмотку, она снаружи скреплялась прочной стальной лентой, воспринимающей усилия.

Это, однако, было не все. Под влиянием мощных сил катушка немного разматывалась,

и концы ее отрывались от тех электровводов, через которые к катушке подавался

ток. Катушка за катушкой "погибали" вследствие второстепенного явления уже после

того, как были преодолены, казалось бы, все основные трудности. Устранение

"мелочей" заняло несколько месяцев. Наконец решение было найдено. Капица создал

обмотку, которая могла "дышать", т. е. автоматически расширяться. Один из

контактов был сделан подвижным и сам после нескольких испытаний занимал то

положение, которое ему "больше нравилось".

Другой серьезной трудностью была краткость времени, в течение которого можно

было производить измерения. Ведь магнитное поле существовало в соленоиде всего

0,01 с, и за это время все эксперименты надо было начать и закончить. Кроме

того, работу осложняли микроземлетрясения, происходящие при резком торможении

генератора в тот момент, когда его обмотка замыкалась накоротко. Несмотря на то,

что генератор был установлен на массивном фундаменте, покоящемся на скальном

основании на виброустойчивой подушке, волна микроземлетрясения искажала

результаты измерений. Чтобы этого не происходило, П.Л.Капица нашел весьма

изящный выход. Он расположил соленоид с объектом исследования в другом конце

зала на расстоянии 20 м от генератора. Волна землетрясения, движущаяся со

скоростью звука в данной среде, проходила 20 м за 0,01 с и достигала соленоида

уже к тому времени, когда измерения проведены.

В момент короткого замыкания температура в обмотке очень сильно повышается, а

затем постепенно выравнивается. Расчеты показали, что эта температура должна

превышать температуру Солнца. Это дало повод профессору Эддингтону шутливо

заявить: "Работы П.Л.Капицы и Э.Резерфорда по расщеплению атома приводят к тому,

что, хотя температура в глубинах звезд, быть может, равна миллионам градусов,

эти глубины являются довольно прохладным местом по сравнению с Кавендишской

лабораторией".

Вот что писал П.Л.Капица о своих опытах Резерфорду, находившемуся в то время в

Каире.

"Кембридж. 17 декабря 1925 г.

Я пишу Вам это письмо в Каир, дабы рассказать, что мы уже сумели получить поля,

превышающие 270 тыс., в цилиндрическом объеме диаметром 1 см и высотой 4,5 см.

Мы не смогли пойти дальше, так как разорвалась катушка, и это произошло с

оглушительным грохотом, который, несомненно, доставил бы Вам массу удовольствия,

если бы Вы слышали его…

Но результатом взрыва был только шум, поскольку, кроме катушки, никакая

аппаратура не претерпела разрушений. Катушка же не была усилена внешним ободом,

каковой мы теперь намереваемся сделать.

…Я очень счастлив, что в общем все прошло хорошо, и отныне Вы можете с

уверенностью считать, что 98 процентов денег были потрачены не впустую, и все

работает исправно.

Авария явилась наиболее интересной частью эксперимента и окончательно укрепляет

веру в успех, ибо теперь мы точно знаем, что происходит, когда катушка

разрывается. Мы также знаем теперь, как выглядит дуга в 13 тыс. А. Очевидно, тут

вообще нет ничего пагубного для аппаратуры и даже для экспериментаторов, если

они держатся на достаточном расстоянии.

Со страшным нетерпением жажду увидеть Вас снова в лаборатории, чтобы в

мельчайших деталях, иные из которых забавны, рассказать Вам об этой схватке с

машинами".

С помощью импульсного генератора П.Л.Капице удалось провести планомерные

исследования в магнитных полях до 32 Тл. Это поле, занимавшее объем всего 2 см3,

стало верхней границей уверенно получаемого магнитного поля. Вплоть до этой

границы Капица совместно с другими учеными исследовал явления Зеемана и Пашена —

Бека, магнитосопротивление, магнитострикцию и другие эффекты.

Рассматривая перспективы получения еще более сильных магнитных полей, П.Л.Капица

указывал в одной из своих статей, что уже в то время (в 20-е годы) состояние

техники позволяло сделать конденсаторные батареи, которые могли бы создать поле

200…300 Тл. Однако технические трудности оказались столь велики, что только

лишь через 40 лет таким способом удалось получить поля, о которых говорил

П.Л.Капица.

Рекорды, поставленные П.Л.Капицей, оставались нетронутыми более 20 лет. Они были

побиты лишь в 50-х годах.

Постепенно Капица убедил Резерфорда построить специальную лабораторию для

исследований в сильных магнитных полях и при сверхнизких температурах. Резерфорд

поддержал эти предложения и даже получил соответствующие средства. Решение


Еще от автора Владимир Петрович Карцев
Приключения великих уравнений

История познания человеком электричества полна неожиданностей и драматизма. Среди «делавших» эту историю мы найдем людей разных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы.В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества… Первое и второе издания книги, вышли в издательстве «Знание» в 1970 и 1978 гг.Книга рассчитана на массового читателя.


Максвелл

Когда нескольких видных ученых попросили назвать, каковы, по их мнению, три величайших физика всех времен, мнения разделились, но ни один не забыл Максвелла.И действительно, трудно переоценить значение работ этого поистине гениального человека, чьи исследования не только легли в основу современной радио- и телевизионной техники, но и стали краеугольным камнем современного понимания материи.


Ньютон

Книга известного советского учёного и писателя В. П. Карцева представляет собой первое на русском языке научно-художественное жизнеописание одного из величайших мыслителей мира — английского математика, физика, механика и астронома Исаака Ньютона, оказавшего воздействие на всё развитие науки вплоть до нашего времени. Книга построена на обширном документальном материале, отечественном и зарубежном. Она содержит также широкое полотно общественной и научной жизни Англии конца XVII — первой половины XVIII века.Рецензенты: доктор физико-математических наук, профессор В. В. Толмачёв, кандидат филологических наук, член СП СССР Б. Н. Тарасов.


Кржижановский

Среди тех, кто рядом с Лениным прошел весь путь борьбы, ссылки и революции, был его ближайший друг Глеб Максимилианович Кржижановский. Инженер по образованию и поэт в душе, автор «Варшавянки», после победы Октября Г. М. Кржижановский весь пыл революционера, знания и талант отдал созданию единого Государственного плана развития страны. В осуществлении плана ГОЭЛРО, «второй программы партии», весь мир впервые зримо увидел социализм. Став вице-президентом Академии наук СССР, Г. М. Кржижановский активно боролся за то чтобы повернуть академию лицом к жизни, промышленности, сельскому хозяйству, к построению нового общества.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.