Магия математики: Как найти x и зачем это нужно - [79]

Шрифт
Интервал

Хотите, расскажу вам о своей любимой бесконечной сумме? Вот она:



Чтобы доказать это, обратимся к алгебраическим хитростям и так же, как мы делали во втором доказательстве действительности конечного геометрического ряда, сдвинем отдельные элементы. Такой подход отлично срабатывает для конечных сумм, но в применении к суммам бесконечным он дает порой очень странные, порой абсурдные результаты. Применим его для начала к одному из предыдущих тождеств. Сумму запишем дважды – без сдвига и со сдвигом. Получится



Сложим эти два уравнения:

2S= 1

Следовательно, S будет равно 1/2, как мы и рискнули предположить чуть выше, заменив x в геометрическом ряду на –1.

Отступление

Тот же метод можно использовать для быстрого (хотя и не вполне «законного») подтверждения формулы геометрического ряда.

Вычтем одно уравнение из другого:

Самое потрясающее то, что знакочередующаяся версия желаемой нами суммы тоже имеет очень любопытный ответ:



Сдвигаем, записываем ответ дважды:



Складываем:

2T= 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 +…

Следовательно, 2T = S = 1/2, то есть T = 1/4, как и было сказано.

Ну и, наконец, посмотрим, что произойдет, если представить сумму всех положительных целых как U и сравнить ее с уже известной нам суммой T (точнее, с ее рядом без сдвига):

U= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 +…
T= 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 +…

Вычтем второе из первого:

U – T= 4 + 8 + 12 + 16 +… = 4(1 + 2 + 3 + 4 +…)

Другими словами,

U – T= 4U

Решая это уравнение для U, получаем 3U = –T = –1/4, следовательно,

U= –1/12

как и предполагалось.

Для протокола отметим, что при сложении бесконечного количества положительных целых сумма расходится до бесконечности. Но не торопитесь списывать все наши конечные результаты на обычные чудеса математики – с подобными странностями можно и нужно разобраться. Достаточно просто посмотреть на числа под другим углом, и сумма 1 + 2 + 4 + 8 + 16 +… = –1 покажется не такой уж и невероятной.

В привязке к оси, как вы наверняка помните, казалось невозможным найти корень числа –1, но у нас получилось сделать это, когда мы трактовали комплексные величины как точки на комплексной же плоскости – точки, подчиняющиеся своим собственным арифметическим законам. Любой физик, занимающийся теорией струн[37], подтвердит, что 1 + 2 + 3 + 4 +… = –1/12, ведь именно на этой сумме основано множество его вычислений. Видите: даже самый абсурдный результат нельзя просто взять и отмести только на основании его абсурдности – всему есть свое объяснение, достаточно лишь напрячь воображение.

Давайте закончим эту книжку еще одним парадоксальным результатом. В начале раздела мы взяли знакочередующийся ряд



сходящийся к ln 2 = 0,693147…. От перемены мест слагаемых сумма, по идее, меняться не должна – этот принцип называется коммутативным законом сложения и выглядит как

A + B = B + A

для любых значений A и B. И тем не менее



Это именно перемена мест слагаемых: мы по-прежнему складываем дроби с нечетными значениями знаменателя и вычитаем дроби с четными значениями знаменателя. И хотя четные числа используются в ряду в 2 раза чаще, чем нечетные, тех и других у нас бесконечный запас. К тому же каждая из дробей встречается лишь единожды, как и в оригинальном уравнении. Правда? Правда. Но взгляните-ка:



Это значит, что у нас получается лишь половина изначальной суммы! Как такое возможно? И как возможно то, что перемена мест слагаемых приводит нас к другому результату? Ответ прост: коммутативный закон сложения вполне может «буксовать», когда дело доходит до бесконечного количества чисел, и это хорошо известно.

«Пробуксовка» возникает при схождении всякий раз, когда положительные величины вместе с отрицательными формируют расходящийся ряд. Другими словами, когда положительные величины дают в сумме ∞, а отрицательные –∞, как в нашем последнем примере. Подобные ряды называются условно сходящимися. Их магия заключается в том, что члены в них можно перемешивать как угодно – и получать тем самым нужный нам результат. Попробуем, например, прийти к 42. Сначала добавляем необходимое количество положительных величин, чтобы сумма чуть-чуть превышала 42, потом вычитаем первый из отрицательных членов. Снова поднимаемся выше 42 и снова вычитаем отрицательный член – на этот раз второй. Повторяем алгоритм и смотрим, как сумма будет все ближе и ближе подходить к 42 (например, вычтя пятый отрицательный член –1/10, мы получим значение, отличающееся от желаемого результата в пределах 0,1, пятидесятый же отрицательный член –1/100 уменьшит этот предел до 0,01 и т. д.).

Конечно, обычно бесконечные ряды, с которыми мы сталкиваемся в повседневной жизни, так странно себя не ведут. Если заменить каждый член ряда его абсолютным значением (что превратит отрицательные величины в положительные), то при сходящейся новой сумме мы получим абсолютно сходящийся ряд. Покажем это на примере уже известного нам знакочередующегося ряда:



Так вот, он будет именно абсолютно сходящимся, ведь при сложении абсолютных величин мы придем к другому, ничуть не менее знакомому нам сходящемуся ряду



Здесь коммутативный закон сложения «буксовать» не будет даже при бесконечном количестве членов. Следовательно, в изначальном знакочередующемся ряду числа 1, –1/2, 1/4, –1/8… можно «тасовать» как угодно – их сумма всегда будет равна 2/3.


Еще от автора Артур Бенджамин
Магия чисел. Моментальные вычисления в уме и другие математические фокусы

Каждый из нас способен умножать, делить, возводить в степень и производить другие операции над большими числами в уме и с большой скоростью. Для этого не нужно решать десятки тысяч примеров и учиться годами — достаточно использовать простые приемы, описанные в этой книге. Они доступны для людей любого возраста и любых математических способностей.Эта книга научит вас считать в уме быстрее, чем на калькуляторе, запоминать большие числа и получать от математики удовольствие.


Рекомендуем почитать
Ум первобытного человека

Книга известного американского антрополога, лингвиста и естествоиспытателя Франца Боаса содержит его взгляды на историю развития человеческой культуры и умственных способностей человека. Автор опровергает утверждение о существовании даровитых и менее одаренных рас; он показывает, что успехи и достижения различных рас, равно как и различия в их анатомических признаках, не являются доказательством различия их умственных дарований. Боас рассматривает вопрос об устойчивости человеческих типов, исследует влияние окружающей среды и наследственности на анатомическое строение и склад ума человека.


Капиталистическое отчуждение труда и кризис современной цивилизации

В монографии исследуются эволюция капиталистического отчуждения труда в течение последних ста лет, возникновение новых форм отчуждения, влияние растущего отчуждения на развитие образования, науки, культуры, личности. Исследование основывается на материалах философских, социологических и исторических работ.


Тайны продуктов питания

Пища всегда была нашей естественной и неизбежной потребностью, но отношение к ней менялось с изменением социальных условий. Красноречивым свидетельством этого является тот огромный интерес к разнообразным продуктам питания, к их природе и свойствам, который проявляет сегодня каждый из нас. Только, достигнув высокого уровня жизни и культуры, человек, свободный от проблемы — где и как добыть пищу, имеет возможность выбирать из огромного ассортимента высококачественных продуктов то, что отвечает его вкусу, что полезнее и нужнее ему, и не только выбирать, но и руководить своим питанием, строить его сообразно требованиям науки о питании и запросам собственного организма.


Социально-культурные проекты Юргена Хабермаса

В работе проанализированы малоисследованные в нашей литературе социально-культурные концепции выдающегося немецкого философа, получившие названия «радикализации критического самосознания индивида», «просвещенной общественности», «коммуникативной радициональности», а также «теоретиколингвистическая» и «психоаналитическая» модели. Автором показано, что основной смысл социокультурных концепций Ю. Хабермаса состоит не только в критико-рефлексивном, но и конструктивном отношении к социальной реальности, развивающем просветительские традиции незавершенного проекта модерна.


Вторжение: Взгляд из России. Чехословакия, август 1968

Пражская весна – процесс демократизации общественной и политической жизни в Чехословакии – был с энтузиазмом поддержан большинством населения Чехословацкой социалистической республики. 21 августа этот процесс был прерван вторжением в ЧССР войск пяти стран Варшавского договора – СССР, ГДР, Польши, Румынии и Венгрии. В советских средствах массовой информации вторжение преподносилось как акт «братской помощи» народам Чехословакии, единодушно одобряемый всем советским народом. Чешский журналист Йозеф Паздерка поставил своей целью выяснить, как в действительности воспринимались в СССР события августа 1968-го.


Сандинистская революция в Никарагуа. Предыстория и последствия

Книга посвящена первой успешной вооруженной революции в Латинской Америке после кубинской – Сандинистской революции в Никарагуа, победившей в июле 1979 года.В книге дан краткий очерк истории Никарагуа, подробно описана борьба генерала Аугусто Сандино против американской оккупации в 1927–1933 годах. Анализируется военная и экономическая политика диктатуры клана Сомосы (1936–1979 годы), позволившая ей так долго и эффективно подавлять народное недовольство. Особое внимание уделяется роли США в укреплении режима Сомосы, а также истории Сандинистского фронта национального освобождения (СФНО) – той силы, которая в итоге смогла победоносно завершить революцию.