Магия чисел. Математическая мысль от Пифагора до наших дней - [78]

Шрифт
Интервал

На божественном уровне минимум два из абсолютов Платона выжили в верованиях миллионов: Добродетель как божество и Истина как его внутренняя неискаженная суть. Красота, кажется, как абсолют утратила со временем свое место. «Красота живет только в глазах зрителей», оставаясь вопросом вкуса и суждения. Но совсем не так с Истиной, особенно в свете открытий в математике. Для современной пифагорейской математической истины свойственна та же проецируемость части абсолютной Истины, как это было во времена Платона. На обоих уровнях, земном и божественном, очевидность достигается путем математического доказательства как главного источника всей философии Платона.

Дважды два могло значить четыре для земных чувств, но для души это значение было безгранично.

По утверждению Платона, философ должен знать арифметику (пифагорейскую). Он должен обдумывать число до тех пор, пока его внутренняя природа не станет понятна разуму, что важно для здоровья самой души. Поскольку число – наиболее прямое из всех средств для перехода от «становящегося» к «существующему», от изменения и гниения до неизменности и бессмертия. Действительно, число существует первоначально, чтобы душа могла подниматься от мимолетного до бессмертного и раствориться в вечности. Геометрия тоже выводит душу от становления к существованию и подготавливает ее к участию в Добродетели. Реальной целью обоих остается знание, то знание, стремление к которому у арифметики и геометрии не преходяще, а вечно. То же и с музыкой, если ее математизировать и влить в Красоту и Добродетель, тогда она поведет душу к Истине и взрастит дух мудрости.

На мирском уровне арифметика – преимущественный вид знания, в котором высокородные персоны должны разбираться очень хорошо. Было сказано, что она важна для всего человечества, потому что ее необычность воздействует возвышенно на умы людей. Действительно, знание математики обязательно для героев, полубогов, богов и иных субъектов, которые могут подниматься высоко вверх к высочайшим знаниям, в частности, математические знания важны для богов, так как в математике присутствует элемент жребия, которому даже боги не способны противостоять.

Что касается самой математики, она парит над обманом чувств в вечной свободе в сфере абсолютных реальностей. Если Фалес мог лишь смутно представлять в своих абстракциях общие параметры, предоставляемые чувствами, то Платон особо подчеркнул, что геометры не работают с видимыми линиями своих чертежей, а, наоборот, пристально разглядывают «абсолютные площади, абсолютные диаметры» и так далее – «вещи в себе», которые могут

быть «увидены» только с помощью разума. Хотя абстракция может происходить от чувственного опыта, истина, которую познает математика, не есть степень чувств или величина переменная, как точка зрения, но есть величина идеальная и абсолютная, вкратце – знание. Разум или даже душа не принимает участия в создании математических истин, а просто находится в курсе их существования, если должным образом подготовлена. Именно в этом последователи Пифагора, и Платон среди них, расходятся с большинством математиков XX века.

Одним из наиболее спорных аргументов философа в пользу независимого существования математических истин является то, что в человеческом теле отсутствует орган чувств, приспособленный для их регистрации. Оказавшись за пределами восприятия с помощью зрения, слуха, обоняния, вкуса и прикосновения, скорее угаданные разумом или душой, эти истины должны существовать вне зависимости от чувств. Их неоспоримое существование разрешает конфликт между чувствами и интеллектом, между точкой зрения и знанием, между кажущимся и реальным и является единственно достаточным доказательством сверхчеловеческой сферы неизменного Сущего.

Естествознание подобным же образом свидетельствует в пользу неизменного, которое выше перемен, но только в той части, где представлены выводы на основании арифметики или геометрии. Из этого следует, что соответствующие достоверности нескольких наук могут быть справедливо доказаны посредством математики, на которую они опираются. Так как «боги всегда геометры» и все, что не в гармонии с геометрией, может быть только иллюзией абсолютной реальности, измышленной божеством.

Часто цитируемый афоризм о геометризации божественного больше похож на описку или временное помутнение рассудка у Платона. В действительности ничего подобного нет в его записях. Афоризм приписывают Платону. Безусловно, это противоречит пифагорейской вере, которой всегда придерживался Платон и которую он стабилизировал в своих собственных идеальных числах. Измененная версия, предложенная в XIX веке другим великим пифагорейцем К.Г.Я. Якоби (1804–1851), стоит ближе к философии Платона: «…бог всегда арифметизирован». В дальнейшем высказывание было дополнено другим величайшим специалистом в области арифметики в истории Ю.В.Р. Дедекиндом (H.W.R. Dedekind, 1831–1916), понятия не имевшим о пифагорейцах; его вариант стал вполне человеческим: «…человек всегда арифметизирован». Между первым и последним прошло двадцать три века противоречивых философий, обращавшихся к математике, чтобы подтвердить свое исключительное право на существование.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.