Магия чисел. Математическая мысль от Пифагора до наших дней - [71]

Шрифт
Интервал

В дополнение к предоставлению оснований «для почти всех теорий пространства, времени и бесконечности» от Зенона до Рассела парадоксы Зенона доказали наибольшую значимость для логики XX века, особенно в той части, что вытекает из признания бесконечных чисел в математике. Как отмечает Рассел, долго разыскиваемая дорога к конечному в 1914 году была прямой и ясной: «Из этого следует, что, если нам суждено разрешить весь класс противоречий, вытекающих из Зенона по аналогии, мы должны создать какую-нибудь надежную теорию бесконечных чисел. В чем же состоят противоречия, которые до последних тридцати лет вели философов к уверенности, что бесконечные числа невозможны? Противоречия делятся на два вида, первый из которых сродни мнимым, в то время как прочие вовлекают для их разрешения до определенной степени новое и нетрадиционное мышление.

Мнимые противоречия – это противоречия из числа тех, что предполагает этимология, и тех, что возникают из смешивания математической бесконечности и того, что философы дерзко именуют «истинной» бесконечностью».

К этому может быть добавлено, что математические логики (которые, несомненно, образуют особую разновидность, хотя, возможно, и представлены весьма скромно среди философов) начиная с 1914 года сочли необходимым проявлять «новое и нетрадиционное мышление» в отношении «теории бесконечных чисел» в надежде придать ей «убедительность». В процессе их размышлений они выявили несколько новых парадоксов логики, которые могли бы оказаться мнимыми, но которые тем не менее подсказали, что в дедуктивном мышлении существует больше ловушек и открытых ям, о которых Фалес и даже Платон никогда и не мыслили. Новые парадоксы теперь больше похожи на естественные следствия из эволюции математической логики, начатой самим Расселом в 1902 году. К некоторым еще вернемся в нужном месте.

Отчасти неугасаемые парадоксы Зенона были представлены в данной главе только для того, чтобы подсветить оледенелую вершину всех видов философии чисел, конечного и бесконечного, теории идеального числа, какой видел ее Платон в свои зрелые годы. Мы постараемся поймать отблеск неизменяемой реальности, которую он описал, после того как узнаем, каким человеком он был.

Глава 18

Политика и геометрия

«В любые времена в мире найдется не более дюжины человек, которые читали и поняли Платона, и никогда нет достаточно средств на издание его работ, хотя вопрос об этом встает перед каждым поколением ради этих нескольких человек, на случай если их пошлет Бог».

Такого мнения придерживался трансценденталист из Конкорда Ральф Вальдо Эмерсон. Он мог бы добавить, что в любые времена найдется не более двух человек из этой дюжины, полностью согласных с прочитанным и понятым. Нет необходимости продолжать, что каждый из них по-своему понял Платона. Там, где какая-то абстрактная универсальная доктрина порождает множественность восприятия, неудивительно, что равные по образованию читатели интерпретируют смысл написанного Платоном по-разному. К счастью для наших сегодняшних целей, Платон неоднократно и категорично говорил о том, что арифметика и геометрия значат для него и как они влияют на его философию. Поскольку нас касается только эта единственная часть его системы, разумно предположить, что мы верно поняли значение сказанного им.

Платона обычно справедливо рассматривают как ученика Сократа. Но у него был и более древний учитель, который оказал, возможно, более значительное влияние на образ его мысли и чьим учеником он действительно имел право себя называть. Если не брать в расчет самого учителя, Платон был величайшим из пифагорейцев. Он был, конечно, даже больше чем просто пифагореец, ведь он был самим собой, но для нас самым важным является законченная форма, которую пифагорейская нумерология приобрела у Платона. Все после Платона становилось лишь подражательными изменениями или фантастически оторванными от жизни наработками, порой доходящими до абсурда. И никто не сделал столько всего полезного для существования чисел и математической истины, не говоря уже о человеческом разуме. Приняв философию Пифагора, он упорядочил ее и усилил, а в своих идеальных числах попытался подвести рациональную базу под высказывание погруженного в мистику предшественника «Все сущее есть число».

Пребывая в смятении от непродуманности обобщений учителя, некоторые из древних комментаторов предприняли попытку снять с Пифагора обвинение в провозглашении бессмысленности. Они подправили его настоящие слова и, соответственно, мысль, заменив на «Все сущее представлено числами». В обоснование своих поправок они предъявляли письмо, подписанное именем Теано. Но было легко доказано, что письмо – не более чем неуклюжая фальшивка. Теано не предавала своего обожаемого мужа. Что до Платона, то он не прибегал к принципиальным уловкам, чтобы отвергнуть все, но непреодолимым препятствием в доктрине Пифагора оказывалось слово «есть». «Есть» являлось формой глагола «быть», случайно оказавшись одной из основных проблем целостной системы Пифагора, где «все сущее есть число». Платон представил свою теорию «существующего» как противопоставление «становящегося». Для читателя вполне достаточно на настоящий момент знать, что его выводы продолжают удовлетворять математиков, которые верят, что числа были скорее найдены, чем созданы, и что «математическая реальность лежит вокруг нас».


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.