Магия чисел. Математическая мысль от Пифагора до наших дней - [118]

Шрифт
Интервал

Было бы интересно познакомиться с нумерологией Канта, особенно по его знаменитой таблице из двенадцати категорий, представленной в виде четырех триад, каждая из которых находится в кардинальных точках. Но мы не будем занимать место для того, чтобы продемонстрировать или обсудить его самые интересные трихотомические ветвления, в которых философ впервые отказался от пифагорейского «деления на два», дихотомии и отважно разделил все на три. Вместо этого перейдем к словам Гаусса (выдающегося математика и современника Канта, уже упомянутого как одного из трех величайших математиков в истории), которыми тот охарактеризовал математическую философию Канта и других любителей математики. Для начала несколько слов о самом Гауссе.

Гауссу (1777–1855) исполнилось двадцать семь лет, когда Кант умер. К тому времени он уже был признан ближайшими соперниками выдающимся математиком в мире. Если Кант и слышал что-нибудь о Гауссе, то не придал этому значения. Оба, математик и философ, были известными домоседами. Самое длинное путешествие Канта составило сорок миль от Кенигсберга, рекорд Гаусса составлял двадцать семь миль от Геттингена, и для каждого из них столь далекое путешествие оказалось единственным приключением. Во всем остальном «величайший философ со времен Платона» и «величайший математик со времен Ньютона» были удивительно не похожи. Здоровяк Гаусс, всю свою жизнь обладавший крепким здоровьем, был законченным ипохондриком. Миниатюрный и хрупкий Кант поддерживал в себе жизнь только благодаря жесткой самодисциплине и постоянной заботе о здоровье. Но они были схожи в боязни собственной смерти. Когда они теряли друзей, то бывший друг вычеркивался из списка живых, и его было запрещено даже упоминать. Гаусс никогда не добивался почитания и, хотя всегда был полностью уверен в своем огромном вкладе в развитие современной математики, никогда не проявлял признаков самолюбования. Кант к старости несколько утомлял окружающих, уверовав в свою первосвященническую безгрешность. Интеллектуальные способности у метафизика ухудшались с возрастом, а у математика оставались все такими же полноценными и мощными вплоть до самого смертного часа. Интерес представляет радикальное отличие Канта и Гаусса. Если сравнение между такими несоизмеримостями, как метафизика и математика, возможно, то допустимо утверждать, что Гаусс лучше разбирался в метафизике, чем Кант – в математике. После окончания университета Кант не имел даже слабого представления о том, что происходит в жизни математики. Гаусс же всю жизнь продолжал прилежно изучать философию. Свободное владение языками позволяло ему не отставать от событий в мире философии не только Германии, но и других стран. Разумеется, он всегда считал себя лишь заинтересованным любителем, не претендуя на сколь-нибудь значимую роль в философии. Но любитель уровня Гаусса вполне может «стоить трех» профессионалов, особенно в философии математики. Пожалуй, в этом случае у Гаусса явное преимущество. Будь он честолюбив, он, а не Лобачевский получил бы титул «Коперника геометрии». Его интерес к фундаментальной геометрии возник еще в возрасте двенадцати лет. Когда умер Кант, Гаусс уже сделал некоторые шаги к неевклидовой геометрии, но нарочно отложил эти исследования, чтобы избежать бесполезных словесных препирательств с фанатиками от математики и профанами от метафизики. Поэтому нет ничего удивительного, что Гаусс не испытывал симпатий к философии математики Канта. Хотя Кант и читал работы Ньютона, а может быть, и из-за того, что он их читал, математические инструменты Канта, применяемые им при изучении проблемы математической истины, были так же стары, как и Евклидовы. С точки зрения математики «Критике» вместо XVIII века следовало появиться в IV веке до н. э.

Кант мог бы чему-нибудь научиться у «Аналитика» Беркли, если бы он не унял чувства, подозрительно напоминающие профессиональную ревность к своему сопернику-идеалисту. Возможно, он ничему не научился бы и у Гаусса, поскольку «принца математиков» никогда сильно не интересовало научить кого-то чему-то. Гаусс ненавидел любые формы наставлений, его шедевры были вполне законченными, но трудно читаемыми. Сравнительно мало людей разбирались в них, а еще меньше постигали всю глубину написанного. В своих опубликованных произведениях Гаусс всегда был взыскательно справедлив или холодно уважителен по отношению к предшественникам или современникам. Но в своих письмах к верным друзьям он бывал по-крестьянски резок. Не слишком грубый пример 1844 года рассказывает нам, что Гаусс действительно думал о математиках-любителях, когда те берутся разъяснить математику, что показывает его точку зрения на одну из кардинальных идей метафизики Канта: «Вы видите все то же самое [математическая некомпетентность] у современных философов (Шеллинга, Гегеля, Нес фон Эзенбека) и их последователей. У вас волосы не встают дыбом от их определений? Почитайте в истории древней философии, что великие люди той эпохи (Платон и другие (я исключаю Аристотеля) приводили в качестве доказательств. Даже у самого Канта зачастую не лучше. С моей точки зрения, его различия между аналитическими и синтетическими суждениями либо тонут от тривиальности, либо ложны».


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.