Магия чисел. Математическая мысль от Пифагора до наших дней - [106]
Уже из одних этих примеров его непрерывной активности становится ясно, что гений Беркли беспорядочно бросало то туда, то сюда, но он продолжал оставаться оригинальным. Только несколько аспектов из всего его разнообразного творчества интересны нам в рамках нашей темы.
Характерные противоречия Беркли проявили себя очень рано. Его наипервейшей любовью была математика. Она же стала последней, хотя в его поздние годы он обманывал себя в уверенности, что «все осталось» позади, где-то в юности. В возрасте шестнадцати лет он написал делавшее ему честь эссе по Евклиду, которое опубликовал тремя годами позже. Монотонное шаг за шагом следование дедуктивному рассуж дению Евклида, переход от одного очевидно неизбежного к другому гипнотизировали юношу. Подобно Платону и «всем святым и мудрым» от Пифагора до Августина, юный Беркли придерживался взгляда на геометрию как на вечную истину. Не ведая своих подсознательных метаний, ошеломленный геометр вбил себе в голову еретическую мысль о предоставлении математического доказательства существования Бога. Если бы он преуспел в этом, что осознал, когда излечился от своей грандиозной мечты, он бы доказал подчиненное положение Бога перед математикой, которая с того момента получила бы неопровержимое доказательство, что есть высшее существующее.
Четкие символы и формальные алгебраические рассуждения встряхнули молодого человека. Перед самозваным воителем за веру, обладавшим исключительной проницательностью на протяжении всей жизни, но вдвойне развитой в юные годы, внезапно спала пелена воображаемой вечной неотвратимости любой математики. Все стало предельно ясно. Математика, понял он, лишена аналитических и гуманистических черт, она дает только то, что в нее вложено простым смертным. Математика (хотя Кант назовет ее таковой позднее) априори не аподиктична и не синтетична. Это точно потому, что тело математики пусто от всего фактического содержания, что логически неумолимая математика возможна. Проект доказательства существования Бога посредством математики, таким образом, был отставлен в сторону.
Отрицая реальность математической истины по Платону, Беркли предвосхитил одну из современных школ мысли почти на двести лет. Математика для формалистов XX века стала бессмысленной игрой с бессмысленными знаками или фишками в соответствии с предписанными людьми правилами, придуманными человечеством правилами дедуктивной логики. Математика в этой выхолощенной философии никак не соотносилась с вечно существующей не связанной с человеком реальностью Платона, она из раздела «действовать», но не «думать» в игре, где правила регулируются людьми как в шахматах.
Что означают шахматы для Вечных истин? Ответ Платона состоит в том, что все возможные игры в шахматы хранились на небесах за годы до того, как какое-то человеческое существо поставило перед собой шахматную доску или набор шахматных фигур. Идеальные и божественно совершенные Шахматы существовали в безвременье в сфере сущего еще до того, как человеческая раса начала свое существование. То же было и с математикой для тех, кто верит, что «математическая реальность находится вне нас». Платоническая реальность шахмат и математики каким-то образом звучит менее спорно, чем те же доводы о бридже или покере. Но как Парменид убедил Сократа, банальное должно быть идеализировано вместе с величайшим, если реализм Платона что-либо значит.
Теория математической истины Платона не смогла удовлетворить юного Беркли. Для него математика была не более сверхъестественна или значима, чем исключительно эффективный вид логического строя. Сегодня с ним согласны многие.
Хотя юноша сам и излечился от математического реализма, Беркли не сумел вылечить остальных. XVIII век был крайне неподходящим временем для обнародования математической ереси, подобной этой. Шумный триумф материализма механики Ньютона сделал невозможным для остальных невнятных побуждений холодного и скептического мышления быть услышанным. Ньютоновские бесконечно малые величины, наскоро подправленные и развитые континентальными математиками, представили небесную механику, которая оказалась действительно небесной во всех смыслах, которые только в силах представить человек. Эта новая математика, по утверждению ее приверженцев, безусловно, должна была содержать какие-то элементы абсолюта и вечной истины. Возможно, так оно и было, ее научные успехи нельзя было отрицать. Но если мистический элемент и обнаружился бы, недоверчивый Беркли показал, что он явно был лишен логической последовательности.
Беркли столь же скептично отнесся к математике Ньютона, которую попытался применить к геометрии Евклида. Несколько специфично, но он возражал против доводов Ньютона о бесконечности, в частности по вопросу «бесконечно малых величин» на ранних стадиях вычислений. Как было показано ранее, Ньютон игнорировал основополагающие противоречия, остановившие греческих математиков не так уж далеко от современных. И Ньютон знал это. Беркли тоже мог бы игнорировать их во имя научных результатов, которые были получены, если бы вопрос стоял только о прикладной математике. Но это было не так.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.