Магия чисел. Математическая мысль от Пифагора до наших дней - [103]
Божественная концепция Ньютона представляет математический интерес, поскольку настойчиво повторяется в вопросе о бесконечности как характерный атрибут божественного жития. Бог, согласно Ньютону, «есть божество, или почти совершенство. Он вечен и бесконечен, всемогущ и всеведущ, что означает – его существование пришло к нам из вечности и в вечность уйдет, он живет из бесконечности в бесконечность… Но сам он не есть вечность и бесконечность, хотя и вечен, и бесконечен, он не длина и не пространство, но он конечен, и у него есть присутствие, и благодаря присутствию всегда и везде олицетворяет длину и пространство… У него нет тела, но есть плоть…».
Было бы интересно узнать, что декада кардиналов по делу Галилея подумала бы обо всем этом. Возможно, кто-то из них прочитал об этом в лучшем из миров. Но в том мире они ничего не могут сделать, чтобы пресечь это или заставить автора замолчать. Спасибо отчасти Генриху Английскому и его многочисленным женам, святая инквизиция не имела активно действующего агента в Англии, и Ньютон был свободен верить в то, что ему нравилось, и проповедовать свою веру, если у него было на то желание.
Как известный англичанин, а он таковым был, Ньютон надеялся, если верить рассказу друзей, что его математическая астрономия снабдит современников рациональной концепцией божественного. Британские последователи Ньютона частенько выдавали собственные научные воззрения с комментариями менее провокационными, чем его, по вопросам теологического применения результатов своих исследований или хотя бы в виде простой хвалебной заметки. Эта религиозная наклонность британских коллег никогда не заставляла долго ждать насмешек более легкомысленных ученых с континента. Традиция вышла из моды в середине XIX века.
Хотя вокруг ньютоновского Бога должна быть аура математического мистицизма, но даже не нашлось и налета нумерологии ни в его теологии, ни в его науке. По темпераменту Ньютон был современным Фалесом с присущим ему здравым смыслом. Величайший из натуральных философов, он не позволял метафизике отбрасывать его назад, когда ему хотелось идти вперед. Абсолютное пространство, абсолютное время и абсолютное движение его «Принципов», возможно, было ведомо еще Платону. Но их не понимал Ньютон. Но он видел, что даже после очистки эти невразумительные абсолюты остаются нерелевантными задачами, с которыми имеешь дело повседневно, и он пошел дальше, не теряя время на них. Для его целей они были так же не важны, как его комментарии по вопросу природы Бога. Таким же образом он выстроил и математику для достижения главной цели. Как следствие, математический мистицизм был временно отстранен из заслуживающей уважения научной мысли его же «Принципами».
Но в профессиональном философском мышлении старые магические числа продолжали существовать, такие же фантастичные, как и прежде. Лейбниц (1646–1726), ведущий философ своего времени и один из немногих универсальных умов в истории, отмечал, что 1 и 0 только числа в двоичной шкале системы счисления. Из этого он сделал вывод, что Бог (1, Монад) создал вселенную из ничего (0, ноль). Хотя этот последний из пифагорейцев изобрел уравнения независимо от Ньютона, всего на двадцать лет или попозже. Никто не видел Лейбница шутящим. Мы присутствуем при совершении чуда.
Следующий критический эпизод в прогрессе математического мистицизма касается единственной неудачи безукоризненного наследника Евклида и неинформированного критика.
Глава 23
Поворотный пункт
Год 1733 – прошло шесть лет со дня смерти Ньютона, до конца света, предсказанного «Божественным Кузанином», оставался год, в судьбе математического мистицизма определенно настал решающий момент. Пифагореизм и платонизм в науке и математике исчерпали себя для тех ученых и математиков, кто познакомился с работами Джироламо Саккери. Но в части лавров Саккери повторял судьбу Роджера Бэкона. Критическим моментом стала измененная геометрическая истина, которая должна была войти в математику сразу за Саккери, но ее признание задержалось почти на целый век. На кону был статус геометрии Евклида.
Утверждают, что «Элементы» Евклида выдержали больше изданий, чем любая другая опубликованная книга, кроме Библии. По сравнению с другими математическими трудами «Элементы», возможно, оказали самое непосредственное влияние на формирование и увековечивание мнения, будто «математическая реальность лежит вне нас». Поколение за поколением, сотни тысяч, если не миллионы податливых учеников элементарной геометрии были убеждены безапелляционностью постулатов Евклида, что его учение – единственно возможное восприятие пространства. И только в 1903 году Евклид был повсеместно исключен из числа учебников для школьников, которым он никогда и не предназначался. Его последним педагогическим прибежищем стали средние школы Англии. Упрямое сражение в течение тридцати лет завершилось в конце победой, и «Евклид» как синоним школьной геометрии наконец стал отмершим понятием в цивилизованных языках.
Геометрия Евклида, но не «Элементы» Евклида, не вид геометрии, изучаемый в обычном школьном курсе, остается наиболее простым и наиболее полезным из всех видов геометрии для повседневной жизни и для, как принято считать, наибольшей части физических наук. Но обыденная польза – не единственное достоинство ее практического использования для нашего поколения. Не менее важно и все, что наши предки усвоили из тактики геометрических доказательств, пытаясь определить значение «истины» и «реальности». Влияние элементарной геометрии на их привычки думать было столь практично для них, а через них – для нас, сколь все когда-либо существующие механизмы созданы в соответствии с геометрией Евклида и механикой Ньютона. Абсолютизм геометрических истин, вложенный в юношей в годы формирования личности, обусловил для образованных, но не мыслящих критически голов принятие абсолютизма в виде других малопонятных «истин» от философии и религии до экономики и политики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.