Магия чисел. Математическая мысль от Пифагора до наших дней - [100]
Было вполне естественно, что Николай проследовал от мистического вывода к пылкому заявлению о применении математики для понимания природы. Математика в его время не соответствовала по уровню решению задач такого масштаба. Когда необходимая математика была выделена Ньютоном в XVII веке, стало возможным смело использовать математическую бесконечность и вообще ничего из теологической бесконечности, сторонником которой выступал Николай. К счастью для его душевного спокойствия, Николай умер за две сотни лет до того момента, когда Ньютон изобрел свои уравнения и начал применять их в динамике и астрономии.
Николай умер в возрасте шестидесяти трех лет, оставив много добротных работ, окруженный славой и ересью. Он был похоронен с двойной пышностью, ему по заслугам оказывали почести как выдающемуся епископу и умнейшему кардиналу. Но он до сих пор не канонизирован.
Бруно (1548–1600) пошел много дальше своего «Божественного Кузанца». Николай просто не любил сторонников Аристотеля. Бруно их ненавидел. Для любого итальянца XVI века подобное отношение было поводом для преследования, о чем Бруно хорошо знал. При этом он не стремился или не умел сглаживать свои язвительные насмешки в адрес учения Аристотеля, всех его работ и последователей, включая, к несчастью для Бруно, логику, с помощью которой теологи оберегали официальную религию. Не мог он также сдержать свой энтузиазм в отношении астрономии Коперника – ереси, чуть меньше проклинаемой только по сравнению с прямым отказом от веры в божественное происхождение Священного Писания. Не оставив выбора своим врагам, Бруно погрузился и в эту ересь тоже, считая святые чудеса и священные учения мифами и предрассудками примитивных людей. Его собственным заменителем того, что он пренебрежительно величал галлюцинациями своих ученых собратьев, стал поэтический пантеизм (религиозно-философское учение, отождествляющее Бога и природу, вселенную). В нем он объединил учения «Божественного Кузанца» – фрагменты неоплатонизма, основополагающие знания пифагореизма, астрономию Коперника, обрывки учения стоиков и эпикурейцев и свои собственные рассуждения о космосе. Все это вошло в состав колоссальной ереси, вступившей в противоречие в основном и в частностях со всем, что было свято для последователей Аристотеля и теологов всех мастей. Со всей своей эксцентричностью, к чести его будет сказано, кажется удивительным, как Бруно оставался последовательным нумерологом. Ему было что рассказать о пифагорейских декадах и очень много о числе пять, чего ни один последователь Пифагора даже не мог себе представить.
Если бы система Бруно, с позволения сказать, имела объединяющую идею, то это была идеализированная версия пифагорейской Монады – Единицы, унифицированного источника, из которого все приходит и туда возвращается. Припоминание бесконечности Анаксимандра, монада Бруно стала его языческим заменителем Бога, официально одобренного аристотелевскими теологами. Его нумерология высокого порядка была вычищена, но не имела существенного преимущества перед платоновской: Идеи рождались из Единицы. Что более существенно, вселенная для Бруно была бесконечна.
Особенно разрушающим эффектом сложной для понимания ереси Бруно стал отклик на «Комедию» Данте. Парадоксально, но в бесконечном космосе Бруно одновременно предполагал слишком много и слишком мало пространства для рая Данте, вообще не оставив места для ада. А действительно, где должны находиться обитель небожителей и ад, так четко и так ясно изображаемые поэтами? Если верить Бруно, то нигде. Но, согласно учениям официальных властей, эти поэтические фантазии настолько глубоко внедрены в сознание народа, что границы ада лучше знакомы образованным, да и необразованным людям, чем знакомые с детства горы и долины родной стороны. И если вдруг кто-то из легкомысленных крестьян забудет дорогу в Страшные ямы на шестой день недели, то на седьмой день ему напомнят детальным шедевром на стенах того храма, куда он придет молиться. После этого он уже не заблудится. Сопутствующее разъяснение его духовного наставника по поводу того, что ждет его по ту сторону могилы, если он вдруг собьется с пути и пропустит исполнение долга и поклонения тем, кто во власти, безусловно, пугающее, но слишком преувеличено.
Бруно отбросил всю эту мирскую космографию небесной любви и адской ненависти. Коперник разбил вдребезги все, кроме края небесной сферы последователей Аристотеля, Бруно размозжил небеса Данте и ад теологов. Они упразднили небольшое и узкое яйцо, в которое древние вталкивали вселенную, и освободили умы, чтобы те могли думать и постигать бесконечный космос. Это была непростительная ересь. Если, как сказал Бруно, существует не один мир, а бесконечность миров, то расплата и казнь на кресте должны совершаться бесконечное число раз, дабы спасти души от обитателей тех миров. Логика была неколебима. Бруно должен был замолчать. Но как его поймать?
Умеющий владеть собой, говорящий быстро, но осмотрительно, Бруно преуспел в ускользании от своих врагов, пока его не предали друзья. Образованный брат-доминиканец, еретик вселенной, представил, когда скептицизм впервые атаковал его, что кальвинисты из Женевы будут приветствовать его в своем несгибаемом кругу и дадут ему пристанище. Но кальвинисты продолжали верить в большую часть того, что Бруно высмеивал как предрассудки. Они предложили своему откровенному гостю покинуть их. Он выехал в Париж, где угодил в самое логово наиболее активных последователей Аристотеля во всей Европе. При встрече лицом к лицу ничто в них не обрадовало неуступчивого свободного мыслителя. Переплыв Ла-Манш, он поспешил в Оксфорд. Там крайне малая горстка здравомыслящих англичан создала почти сносную атмосферу познания, и Бруно свободно читал лекции по астрономии Коперника и своей ереси. Но неугомонный человек не сумел заставить свою душу обрести относительное спокойствие, и он вернулся на континент.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.