Люди на Луне - [97]
Одним из самых важных и ответственных этапов путешествия людей на Луну стало возвращение командного модуля Apollo в атмосферу Земли. Почти на второй космической скорости, около 11 км/с, спускаемые аппараты принимали удар верхних слоев атмосферы. На такой скорости даже разреженный воздух на высоте 80 км уже оказывает значительное сопротивление и тормозит корабль.
Для более плавного возвращения и уменьшения перегрузок экипажа посадка проходила по сложной траектории. Корабль по пологой траектории снижался из космоса до высоты 55 км над Землей, где перегрузки поднимались до допустимого максимума – более чем в шесть раз. Затем корабль «отскакивал», поднимаясь на высоту около 58 км, затем происходил второй отскок с подъемом до высоты 60 км, и только потом снижение продолжалось с существенно погашенной скоростью.
Художественное представление входа в плотные слои атмосферы командного модуля Apollo. NASA
Профиль снижения Apollo в атмосфере Земли. NASA
В некоторых описаниях этот процесс называют «отскок от атмосферы», что неверно, так как выхода за пределы атмосферы уже не происходит, и фраза создает ложное представление об атмосфере как однородном слое, подобном поверхности водоема.
Схему «отскока» использовал советский возвращаемый аппарат «Зонд-7», который совершал облет Луны в 1968 году. Остальные возвращаемые аппараты этой серии совершали более кратковременный баллистический спуск, который приводил к большим перегрузкам и большему нагреву корпуса.
В отличие от советских «Зондов», спускаемые аппараты Apollo после возвращения с Луны выглядят светлее, т. е. менее «закопченными», и даже наклеенная «фольга» экранно-вакуумной теплоизоляции сохраняется на корпусе, хоть и не полностью.
При сравнении внешнего вида вернувшихся спускаемых аппаратов кажется, что Apollo пострадали от столкновения с атмосферой значительно меньше, чем околоземные «Союзы», даже современные. Хотя российские корабли приземляются на скорости 8 км/с, т. е. им требуется сбросить значительно меньше кинетической энергии, чем при возвращении от Луны.
Командный модуль Apollo 15 на окололунной орбите (слева), Apollo 9 после вхождения в атмосферу на первой космической скорости (по центру). Справа – командный модуль Apollo 11, входивший в атмосферу на второй космической скорости. NASA
Во время снижения в атмосфере корабль формирует перед собой ударную волну плотного воздуха. Взаимодействие корабля и воздуха приводит к нагреву корпуса. Чтобы люди и полезная нагрузка внутри корабля не пострадали от температуры, спускаемый аппарат защищают. Защита донной части спускаемого аппарата от аэродинамического нагрева в американской терминологии называется «тепловой щит» (heat shield), в русскоязычной – «лобовой теплозащитный экран». Теплозащита покрывает также весь спускаемый аппарат, кроме верхнего люка, но ее толщина меньше, чем толщина теплового щита.
Теплозащита космических кораблей, которая применяется для противостояния атмосферному нагреву, в большинстве случаев имеет схожий состав. За исключением первых капсул программы Mercury и космических челноков Space Shuttle и «Буран», у остальных космических кораблей США и СССР тепловой щит – это композит из стеклоткани с эпоксидным наполнителем. Различаются только технологии плетения и заполнения клеем, форма теплозащитных элементов и т. п.
Следует также отличать теплозащиту, необходимую для возвращения в атмосферу, и теплоизоляцию, которую применяют в космосе для отражения солнечных лучей. Экранно-вакуумная теплоизоляция (ЭВТИ) бывает разной конструкции, но, как правило, это тонкий многослойный материал с металлизированным покрытием. Экранно- вакуумная теплоизоляция «Союза» практически не крепится к спускаемому аппарату, а надета подобно куртке. У других кораблей может быть иначе. Так, металлизированная ЭВТИ на «Востоках», «Восходах» и Apollo наклеивалась поверх теплозащитного корпуса. Некоторые современные корабли уже обходятся без нее и просто покрываются краской.
К настоящему времени мировая космонавтика накопила значительный опыт возвращения космических аппаратов на Землю, и в том числе на скоростях выше первой космической. Некоторые из них были по форме ближе к «Союзам», другие – к Apollo. Сравнивая их состояние, мы можем составить более широкое представление о том, какие повреждения получают космические корабли при входе в плотные слои атмосферы.
Тепловые щиты кораблей прошлого и настоящего, за исключением челноков, создаются по композитной технологии. Задача этих щитов не просто изолировать экипаж от атмосферного нагрева, но и поглотить и рассеять энергию летящего корабля. Композитные тепловые щиты являются так называемой абляционной теплозащитой, т. е. они поглощают тепло, горят (сублимируют – испаряются или возгоняются) и сбрасывают тепло вместе с продуктами горения. Сферические спускаемые аппараты советских «Востоков» и «Восходов» не имели отдельного щита, но их сферическая теплозащита меняла толщину примерно от 10 см в нижней части до 2 см в верхней.
В момент вхождения в плотные слои атмосферы космический корабль окутывается облаком плазмы, разогретого воздуха и продуктов горения теплозащиты. Но энергия передается на корпус неравномерно в его разных частях. Наибольший нагрев – до 2000 °С – испытывает тепловой щит, т. е. нижняя часть аппарата, верхняя же не переживает такого серьезного воздействия, нагреваясь только на несколько сотен градусов.
Сегодня ты пошёл в охрану каравана, чтобы привести браминов в Броккен-Хиллс и обменять их на золото. Однако на пустошах всегда подстерегает опасность. И вот теперь ты один – в толстой кожаной куртке и с «Дезерт Игл» в руке. Ты идёшь на поиски легендарного Братства Стали с целью вступить в его ряды. Нож, кошелек и фляга с водой, – вот и вся твоя поклажа. Тебе предстоит много узнать о дальних городах, погрузиться в пучину мафиозного порока и запутаться в сети бандитских интриг.Жизнь так жестока к тем, кто промахивается! Но только не к тебе, стрелку-одиночке, охотнику на кентавров и инопланетную тварь.
Покорители далеких планет часто становятся героями книг или фантастических фильмов. Они пересекают пояса астероидов, проносятся мимо живописных планет-гигантов, поднимаются на склоны инопланетных гор и любуются внеземными закатами… Будущее наступило, но не такое, как мы хотели. Теперь изучают и открывают космос настоящие покорители – роботы. Вместе с ними люди, не покидая Земли, пересекают миллионы километров пустоты, преодолевают трудности, находят решение в безвыходной ситуации и открывают нам загадки космоса.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.