Люди на Луне - [89]

Шрифт
Интервал

Одной из важнейших проблем, которую создавал жидкий водород в баках, стала его низкая температура кипения – около –253 °C. Жидкий кислород, который широко применяется в космонавтике, имеет температуру кипения около –182 °C. То есть в баках с жидким топливом необходимо поддерживать температуру ниже этого уровня. Свойства, которыми обладают эти жидкости, отличаются, поэтому прежнего опыта работы с криогенными типами топлива инженерам NASA не хватало.

Если наблюдать старт ракеты с жидким кислородом в виде топливного компонента, то можно обратить внимание на белые хлопья, которые осыпаются с ракеты в момент подъема. Это водяной лед, который конденсируется из воздуха и намерзает на бак с холодным жидким кислородом. Ледяная корка на ракете становится хорошей теплоизоляцией, которая мешает кислороду нагреваться и улетучиваться. Значительно более холодный водород вызывает иные эффекты: он практически сжижает окружающий воздух при температуре −190 °С, что все еще теплее жидкого водорода. В результате жидкий воздух начинает стекать по баку с жидким водородом, передавая ему свою температуру и сильнее нагревая горючее. Поэтому бакам с жидким водородом необходима дополнительная теплоизоляция, чего не требуется при использовании жидкого кислорода.


Командный отсек корабля Orion, приводнившийся после испытательного околоземного полета в 2014 году. NASA


В первом поколении ракеты Saturn V, на протяжении восьми запусков до Apollo 12 включительно, применялась довольно сложная теплоизоляция водородного бака второй ступени: теплоизолирующие маты крепились на специальном каркасе с внешней стороны топливного бака. В качестве материала баков были выбраны сплавы, прочность которых повышается при низких температурах. Соответственно, теплоизоляцию на баки пришлось наносить снаружи и крепить теплоизолирующий слой к металлу с температурой жидкого водорода. Первоначальная конструкция предполагала использование ячеистых стеклопластиковых панелей, заполненных изоцианатной теплоизолирующей пеной. Панели неплотно прилегали к топливным бакам, и перед заправкой все полости приходилось продувать гелием, чтобы избежать сжижения воздуха между панелями и баками. Технология была сложной, не всегда работала как надо, и компания-производитель искала альтернативы.

Решение проблемы оказалось намного проще: напыляемая пенополиуретановая теплоизоляция хорошо держалась непосредственно на топливном баке. Все Saturn V, начиная с запуска Apollo 13, полетели именно с такой теплоизоляцией. Впоследствии практически тот же прием использовали при производстве кислород-водородного внешнего топливного бака корабля Space Shuttle. Технология отлично служила более 20 лет, но в 2003 году произошла катастрофа шаттла Columbia, и причиной стал кусок теплоизолирующей пены, отвалившийся от топливного бака. Тем не менее эксплуатация системы Space Shuttle продолжалась с 2005 по 2011 год.

Сейчас технологию напыления пенополиуретановой теплоизоляции на кислород-водородную ракетную ступень, которую освоили на пусках Saturn V и Space Shuttle, готовят к применению в центральном блоке первой ступени сверхтяжелой ракеты SLS.

КОРАБЛЬ APOLLO

Полет людей на Луну и их возвращение на Землю стали возможны благодаря двум кораблям, каждый из которых разделялся на два отсека:

● орбитальный корабль, собственно Apollo, состоял из командного и служебного отсеков, которые также называют модулями;

● лунный модуль разделялся на посадочную и стартовую ступени.

В командном отсеке корабля Apollo располагался экипаж и обеспечивалось управление полетом до Луны и обратно. В служебном отсеке были двигатели, топливные баки, система электропитания и другие вспомогательные системы.

Важной функцией командного отсека было возвращение экипажа на Землю на второй космической скорости. Предыдущие космические корабли США, Mercury и Gemini, могли возвращать людей только с первой космической скорости. Первая космическая скорость, необходимая для поддержания орбитального полета вокруг Земли, равняется примерно 8 км/с. Вторая космическая, что требуется для межпланетных перелетов, чуть выше – 11 км/с. Хотя полет на Луну не считается межпланетным, но кораблю все равно требовалась скорость около 11 км/с для достижения Луны, и с такой же скоростью проходило возвращение.

Для безопасного возвращения людей на Землю со скоростью 11 км/с предусмотрели целый комплекс систем мягкой посадки. Первый удар верхних слоев атмосферы принимал на себя тепловой щит командного модуля. Для эффективного гашения скорости на приемлемых перегрузках предусматривалось управляемое снижение и долгий, почти горизонтальный полет на высоте около 60 км. Тепловой щит в воздухе формировал перед собой ударную волну, которая помогала сбрасывать скорость, но приводила к нагреву щита. Чтобы не пропускать жар от атмосферы к экипажу, тепловой щит был абляционным, т. е. «сгораемым» и испаряющимся. Пока горел щит, люди оставались в безопасности. При значительном снижении скорости и достижении сверхзвукового режима полета, торможение тепловым щитом уже становилось неэффективным и в дело вступало несколько парашютов. Для смягчения финального удара о поверхность посадка проходила в Тихий океан.


Еще от автора Виталий Юрьевич Егоров
Рука «Анклава»

Сегодня ты пошёл в охрану каравана, чтобы привести браминов в Броккен-Хиллс и обменять их на золото. Однако на пустошах всегда подстерегает опасность. И вот теперь ты один – в толстой кожаной куртке и с «Дезерт Игл» в руке. Ты идёшь на поиски легендарного Братства Стали с целью вступить в его ряды. Нож, кошелек и фляга с водой, – вот и вся твоя поклажа. Тебе предстоит много узнать о дальних городах, погрузиться в пучину мафиозного порока и запутаться в сети бандитских интриг.Жизнь так жестока к тем, кто промахивается! Но только не к тебе, стрелку-одиночке, охотнику на кентавров и инопланетную тварь.


Делай космос!

Покорители далеких планет часто становятся героями книг или фантастических фильмов. Они пересекают пояса астероидов, проносятся мимо живописных планет-гигантов, поднимаются на склоны инопланетных гор и любуются внеземными закатами… Будущее наступило, но не такое, как мы хотели. Теперь изучают и открывают космос настоящие покорители – роботы. Вместе с ними люди, не покидая Земли, пересекают миллионы километров пустоты, преодолевают трудности, находят решение в безвыходной ситуации и открывают нам загадки космоса.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.