Квантовые миры и возникновение пространства-времени - [22]
Если квантовая волновая функция описывает систему с некоторым заданным значением энергии, гамильтониан просто равен этому значению, и тогда, следуя логике уравнения Шрёдингера, система продолжает делать одно и то же, поддерживая энергию на одном уровне. Но чаще, поскольку волновые функции описывают суперпозиции различных возможностей, система представляет собой комбинацию множества энергий. В данном случае гамильтониан захватывает по чуть-чуть от каждой из них. Из этого следует, что в правой части уравнения Шрёдингера содержится информация о том, сколько энергии несет каждая из составляющих волновой функции в квантовой суперпозиции: высокоэнергетические компоненты эволюционируют быстрее, низкоэнергетические – медленнее.
В данном случае действительно важен сам факт, что существует уравнение, четко определяющее динамику системы. Когда оно у нас есть, весь мир превращается в игровую площадку.
Волновая механика сильно всколыхнула науку, и в скором времени Шрёдингер, английский физик Поль Дирак и другие ученые продемонстрировали, что она, в сущности, эквивалентна матричной механике, подарив нам единую теорию квантового мира. Но почивать на лаврах было рано. Физики остались один на один с вопросом, над разрешением которого мы бьемся по сей день: что такое волновая функция на самом деле? Какой физический феномен она описывает, если вообще описывает?
С точки зрения де Бройля, его волны материи были нужны, чтобы направлять движение частиц, а не заменить их вообще. (Позже он развил эту идею, предложив теорию волны-пилота, которая и сегодня остается жизнеспособным подходом к объяснению основ квантовой механики, хотя и не популярна среди практикующих физиков.) Напротив, Шрёдингер стремился полностью избавиться от фундаментальных частиц. Изначально он надеялся, что его уравнение будет описывать локализованные пучки вибраций, каждый из которых локализован в относительно небольшой области пространства и поэтому кажется частицеподобным макроскопическому наблюдателю. Тогда можно было бы считать, что волновая функция представляет распределение массы в пространстве.
Увы, стремления Шрёдингера были сведены на нет его же собственным уравнением. Если взять волновую функцию, описывающую единственную частицу, приблизительно локализованную в некоторой области пустого пространства, то уравнение Шрёдингера ясно показывает, что будет с этой частицей дальше: она быстро распространится повсюду. Предоставленные сами себе волновые функции Шрёдингера совсем не похожи на частицы[9].
Недостающее звено оставалось за Максом Борном, коллегой Гейзенберга по матричной механике: волновую функцию следует трактовать как инструмент для расчета вероятности встретить искомую частицу в любой конкретной точке. В частности, мы должны взять как вещественную, так и мнимую часть комплексной амплитуды, возвести обе эти части в квадрат по отдельности и сложить два полученных числа. Так мы получаем вероятность наблюдения соответствующего результата. (Предположение, что речь идет именно о квадрате амплитуды, а не об амплитуде как таковой, содержится в сноске, которая была добавлена к статье Борна 1926 года в последний момент.) После того как мы пронаблюдаем волновую функцию, она коллапсирует и локализуется в той точке, где мы обнаружили частицу.
Знаете, кому не понравилась вероятностная интерпретация уравнения Шрёдингера? Самому Шрёдингеру. Он, как и Эйнштейн, ставил своей целью предоставить конкретное механистическое обоснование квантовых феноменов, а не просто создать инструмент, которым можно было бы пользоваться для расчета вероятностей. «Мне это не нравится, и я сожалею, что когда-либо имел к этому отношение», – ворчал он впоследствии. Смысл знаменитого мысленного эксперимента с котом Шрёдингера, где волновая функция кота эволюционирует (в соответствии с уравнением Шрёдингера) в суперпозицию «живого» и «мертвого», заключался не в том, чтобы заставить людей говорить: «Ух ты, какая таинственная эта квантовая механика». Эксперимент был призван подтолкнуть людей к мысли: «Позвольте, но ведь так не бывает». Но, насколько нам известно, так оно и есть.
Обширная интеллектуальная работа была проделана за первые три десятилетия двадцатого века. В течение XIX века физики собрали многообещающую картину, отражавшую природу материи и сил. Материя состоит из частиц, а силы передаются через поля, и все они подчиняются законам классической механики. Однако, столкнувшись с экспериментальными данными, они были вынуждены выйти за рамки этой парадигмы. Стремясь объяснить исходящее от объектов излучение, Планк предположил, что свет состоит из дискретных порций энергии, а Эйнштейн развил эту идею, допустив, что свет существует в форме частицеподобных квантов. Тем временем факт стабильности атомов и наблюдение за тем, как газы излучают свет, позволили Бору предположить, что электроны могут двигаться лишь по определенным разрешенным орбитам, иногда перескакивая с одной на другую. Гейзенберг, Борн и Йордан оформили эту историю о вероятностных прыжках в полноценную теорию – матричную механику. Взглянув на нее под другим углом, де Бройль указал, что если мы будем трактовать материальные частицы, например электроны, как волны, то сумеем вывести квантованные орбиты Бора, а не просто постулировать их существование. На основании этого утверждения Шрёдингер разработал собственную полноценную квантовую теорию, в конечном итоге продемонстрировав эквивалентность матричной и квантовой механики. Несмотря на все чаяния, что волновая механика позволит избавиться от вероятностей как фундаментальной части теории, Борн показал, что правильное понимание волновой функции Шрёдингера таково: эта функция возводится в квадрат и получается вероятность наблюдать тот или иной результат измерения.
В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные.
Как работает жизнь? Как природа знает, сколько зебр и львов должно жить в саванне или сколько рыб должно плавать в океане? Откуда наш организм знает, сколько эритроцитов должно быть в крови? Шон Кэрролл – американский биолог, ведущий специалист в области эво-дево – рассказывает нам невероятно интересную историю открытий. Сокровенные тайны природы – законы, которые управляют количеством клеток в наших телах, животных и растений в дикой природе. Самое удивительное в этих правилах то, что они похожи и подчиняются одной логике – логике жизни.
В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.
Как выглядела Земля в разные периоды? Можно ли предсказать землетрясения и извержения вулканов? Куда и почему дрейфуют материки? Что нам грозит в будущем? Неужели дожди идут из-за бактерий? На Земле будет новый суперконтинент? Эта книга расскажет о том, как из обломков Большого Взрыва родилась наша Земля и как она эволюционировала, став самым удивительным местом во Вселенной – единственной известной живой планетой. Ведущие ученые и эксперты журнала New Scientist помогут ближе познакомиться с нашими домом, изучить его глубины, сложную атмосферу и потрясающую поверхность.В формате PDF A4 сохранен издательский макет книги.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.
Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.
«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.