Красота в квадрате - [17]

Шрифт
Интервал

Вот это число: 9,949­623­089­593­959­412­183­321­241­093­26…

На самом деле для последовательности чисел, сформированной по принципу «возвести в квадрат и прибавить 1», существует бесконечное множество таких исходных чисел, но они размещены на цифровой оси настолько редко, что вероятность выбрать какое-то из них случайным образом равна нулю. По словам Теда, у закона Бенфорда масса секретов, которые еще предстоит открыть.

Закон Бенфорда — один из самых ярких примеров того, как процесс, в котором фигурирует большое количество неизвестных случайных факторов, может образовать очень простую числовую закономерность. Точная последовательность событий, приводящих к росту или падению курса акций или увеличению численности населения города, может оказаться слишком сложной для понимания, но результат этих событий хорошо упорядочен и довольно прост. Не исключено, что у нас не получится составить прогноз в отношении курса конкретных акций или численности населения определенного города, но мы можем быть уверены в одном: в целом эти показатели всегда подчиняются закону Бенфорда.

В книгах тоже часто встречаются простые числовые закономерности. Возьмем в качестве примера книгу Джеймса Джойса Ulysses («Улисс»)9. В 40-х годах ХХ столетия исследователи Висконсинского университета на протяжении четырнадцати месяцев составляли список слов, которые использовались в этой книге [6]. Они напечатали ее на гуммированной бумаге, вырезали отдельные слова и наклеили их на тысячах отдельных листков. Затем упорядочили эти слова по убыванию частоты их встречаемости в тексте. Полученные данные представляли интерес не только для студентов, изучающих лингвистику, но и для психологов, работающих с лексическими ассоциациями, а также для таких нестандартно мыслящих ученых, как профессор Гарвардского университета Джордж Кингсли Ципф, который выявил потрясающую закономерность [7].


Слово


Ранг (порядковый номер)


Частота


I («я»)


10


2653


Say («сказать»)


100


265


Bag («сумка»)


1000


26


Orangefiery («оранжево-пламенный»)


10 000


2


Оказалось, что десятое по частоте употребления слово встречается в тексте почти в десять раз чаще, чем сотое, почти в сто раз чаще, чем тысячное, и почти в тысячу раз чаще, чем десятитысячное. Джеймс Джойс не выбирал слова с такой арифметической точностью специально; тем не менее закономерность, которой подчиняется их встречаемость в его книге, очевидна.

Если говорить языком математики, частота встречаемости слов в романе «Улисс» приближенно подчиняется следующему закону:

частота × ранг = 26 500

Эту формулу можно привести к такому виду:

В общем виде данное уравнение выглядит так:

Следовательно, частотность употребления того или иного слова обратно пропорциональна его рангу (порядковому номеру) в списке, упорядоченном по убыванию частоты. Другими словами, если ранг слова в n раз больше, то частота его использования в n раз меньше.

Изучив другие тексты, Ципф пришел к выводу, что во всех книгах на всех языках частота встречаемости слов и их порядковый номер в частотном списке находятся в обратной зависимости, но с небольшим уточнением:

Это уравнение известно как закон Ципфа. (Когда два числа записаны в форме x>y, мы говорим «x в степени y», и это значит, что число x умножается само на себя y раз. Как мы знаем со школьных лет, 4>2 = 4 × 4, а 2>3 = 2 × 2 × 2. Однако число y может быть не только целым числом. Следовательно, 2>1,5 означает, что число 2 умножается само на себя 1,5 раза, а это равно 2,83. Чем ближе значение числа y к 1, тем ближе x>y к числу x.)

Ципф обнаружил, что значение константы a всегда стремится к 1 независимо от того, кто автор книги и каково ее содержание. То есть зависимость между частотой встречаемости слов и их рангом всегда очень близка к обратно пропорциональной зависимости. В случае романа «Улисс» значение a равно 1.

Я считаю закон Ципфа чрезвычайно увлекательным. Он раскрывает заманчиво простую математическую закономерность, определяющую выбор слов. Я решил выяснить, соблюдается ли этот закон в книге, которую вы сейчас читаете. Для подсчета частотности слов я воспользовался компьютерной программой, а не гуммированной бумагой и ножницами. Просматривая частотную таблицу, я увидел, что частота встречаемости слов действительно обратно пропорциональна их порядковому номеру в таблице. Самое распространенное слово, употребляемое мною в книге («the»), встречается в десять раз чаще, чем десятое по частоте слово «was», примерно в сто раз чаще, чем сотое по частоте слово «who», и в тысячу раз чаще, чем тысячное слово «spirals».

Когда я составил на основе данных о частоте и ранге слов график (первый график, представленный ниже), оказалось, что соответствующие точки лежат близко к координатным осям. График, отображающий обратно пропорциональную зависимость, всегда представляет собой L-образную кривую. Сначала кривая резко снижается, а затем быстро выравнивается и переходит в своего рода «длинный хвост». Это говорит о том, что одни слова встречаются в тексте в огромном количестве, а другие почти не используются. (На самом деле во всех текстах, независимо от их объема, около 50 процентов слов употребляются только один раз. В данной книге таких слов 51 процент [8].)


Еще от автора Алекс Беллос
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Рекомендуем почитать
Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Древний Восток. У начал истории письменности

Издание представляет собой исследование восточной литературы, искусства, археологических находок, архитектурных памятников. Повествование о могуществе и исчезновении городов и царств шумеров, хеттов, ассирийцев, скифов, индийцев сопровождается черно-белыми и цветными фотоиллюстрациями. В конце издания представлена хронологическая таблица заселения Древнего Востока. Красиво изданная, богато иллюстрированная книга для среднего и старшего возраста. Цветные полностраничные репродукции и черно-белые в тексте на каждой странице. На переплете: фрагмент выкопанной в Уре мозаичной плиты «Шумерское войско в походе». Издание второе.


Полчаса музыки. Как понять и полюбить классику

Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».