Красота физики. Постигая устройство природы - [30]
Кажется, что связывать белый свет с чистотой – правильно. Белый – это цвет главного источника естественного освещения, нашего солнца, когда оно стоит высоко в небе. Белыми мы видим наиболее яркие поверхности – такие как снег, который лучше всего отражает солнечный свет.
Но научный анализ говорит нам о другом.
Когда луч солнечного света проходит сквозь стеклянную призму, появляется цветная радуга или, как мы говорим, спектр. Похожий эффект, причиной которого является прохождение солнечного света сквозь мелкие капельки воды, служит причиной возникновения естественных радуг.
До работ Ньютона бытовало мнение, что цвета в свете, выходящем из призм или дождевых капель, возникают из-за того, что белый свет теряет свое качество, проходя сквозь эти объекты. Было общепринято думать, что различные цвета – это смеси черного цвета (темноты) и белого в различных пропорциях. В зависимости от того, насколько долгий путь свет проходит сквозь призму, он портится в большей или меньшей степени и поэтому выглядит имеющим тот или иной различный цвет. Эта идея подкупает своей простотой: зачем вводить множество ингредиентов, когда достаточно иметь два (или даже один)?
Ньютон же заявил, что белый свет – в том числе и белый, приходящий к нам от солнца, – это смесь множества основополагающих ингредиентов. Согласно его идее, призма вовсе не портит белый свет. Вместо этого она разделяет солнечный свет на его собственные ингредиенты – которые в нем и так присутствовали.
Простой, но полный глубокого смысла эксперимент, который сам Ньютон выделял как experimentum crucis (критический эксперимент) для подтверждения своей идеи, делает эту схему очевидной – его изображение есть на цветной вклейке J. Цвета спектра, в которые белый свет предварительно разложен при помощи призмы, могут быть вновь собраны в белый свет с использованием второй призмы. Если собирается не весь спектр, а только его часть, то на выходе получится не белый свет, а смесь тех цветов, которые прошли через всю оптическую систему. В случае, когда источником света служит естественный свет солнца и экспериментатор отсекает синюю часть спектра, то в выходящем свете преобладает зеленый. Если позволить достигать второй призмы лишь узкому диапазону спектральных лучей, – например, как показано на цветной вклейке, только лучам красного цвета, – то на выходе получится тот же самый цвет.
Суть эксперимента в том, что с помощью второй призмы можно обратить разделение лучей и вернуться к белому свету, неотличимому по своим свойствам от того солнечного света, который был изначально. Как видно на картинке, можно поступить и иначе, скомбинировав вновь только часть спектра. Тогда мы получаем лучи промежуточных цветов, но не белого цвета. Таким образом, призма выполняет анализ входящего в нее белого света.
Этот эксперимент легко интерпретировать, предположив, что свет состоит из фотонов (правда, этот термин возник лишь века спустя, но, чтобы не запутать читателя, я буду называть атомы света фотонами).
Фотоны могут быть различных сортов – например, разных форм или, скажем, разной массы, – и за счет этого на них по-разному влияет стекло призмы. В этом случае призма, искривляя по-разному траектории различных типов таких атомов, будет разделять и, по сути, сортировать их. То есть она работает как современный торговый автомат, который самостоятельно разделяет различные виды брошенных в него монеток. Различные виды фотонов также по-разному воздействуют на наши глаза, производя ощущения различных цветов.
Ньютон не заявлял о своей приверженности ни этой, ни какой-либо другой конкретной модели. Это была бы лишь гипотеза! Но примерно так он мыслил, планируя свою дальнейшую экспериментальную программу.
Как далеко можно зайти в этой сортировке световых лучей? Мы можем позволить лишь маленькой части спектра беспрепятственно идти дальше, таким образом получая лучи чистых спектральных цветов. Составные части таких отфильтрованных лучей, чем бы они ни были, при прохождении сквозь призму были развернуты на один и тот же угол. Действительно ли этот процесс выделил одинаковые, фундаментальные составляющие света? Или в них кроется еще какая-то новая структура, которую можно иным способом обнаружить и произвести их дальнейшую очистку?
Ньютон подвергал свои очищенные цвета, лучи спектральных цветов, всевозможным издевательствам. Он отражал их от различных поверхностей, пропускал сквозь линзы и призмы из всяческих прозрачных (или частично прозрачных) материалов, не только лишь из обычного стекла. И обнаружил, что все эти процессы оставляют неизменным результат изначальной спектральной сортировки при помощи призмы.
Спектрально желтый, будучи отраженным, остается желтым; спектрально синий остается синим – и т. д. Часто свет поглощается теми предметами, которые мы воспринимаем как цветные. Например, какой-либо синий предмет может поглощать все спектральные цвета, кроме близких к синему, который он отражает, – и именно поэтому он и представляется синим. Но никогда не бывает так, чтобы спектрально желтый отразился бы как спектрально синий или какой-либо другой цвет, кроме того же желтого.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Перед вами — уникальная книга, исследующая подоплеку новейших физических идей о массе, энергии и природе вакуума. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки.Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.