Красота физики. Постигая устройство природы - [16]

Шрифт
Интервал

Сегодня трудно согласиться с деталями обеих этих теорий. Науке нет никакой пользы от того, чтобы анализировать мир в терминах этих четырех (или пяти) элементов. В современном представлении атомы – вовсе не твердые тела, и уж подавно они не имеют форму платоновых тел. Теория элементов Платона с сегодняшней точки зрения выглядит грубой и во всех отношениях безнадежно неверной.

Структура из симметрии

Но хотя взгляды Платона провалились как научная теория, они были успешны как предсказание и, я бы сказал, как произведение интеллектуального искусства. Чтобы оценить концепцию в этом качестве, мы должны отойти от деталей и посмотреть на нее в целом. Глубинная, ключевая догадка в системе физического мира с точки зрения Платона состоит в том, что мир этот должен по большому счету воплощать в жизнь красивые понятия. И эта красота должна быть красотой особого рода: красотой математической правильности, идеальной симметрии. Для Платона, как и для Пифагора, эта догадка была в то же время верой, страстным желанием и основополагающим принципом. Они жаждали привести Разум в гармонию с Веществом, показав, что Вещество состоит из чистейших произведений Разума.

Важно подчеркнуть, что Платон поднялся в своих идеях над общепринятым уровнем философских обобщений своего времени, чтобы сделать определенные заявления о том, что же такое вещество. Его своеобразные, хотя и неправильные, идеи не попадают в позорную категорию «даже не ошибочно»[14]. Как мы уже видели, Платон даже сделал некоторые шаги в направлении сравнения этой теории с реальностью. Огонь обжигает, потому что у тетраэдра острые грани, вода течет, потому что икосаэдры легко перекатываются друг по другу, и т. д. В диалоге Платона «Тимей», где говорится обо всем этом, вы также найдете причудливые объяснения того, что мы бы назвали химическими реакциями и свойствами сложных (состоящих больше чем из одного элемента) веществ. Эти объяснения основаны на геометрии атомов. Но эти напрасно потраченные усилия удручающе далеки от того, что мы при всем желании могли бы считать серьезным экспериментальным доказательством научной теории и еще дальше от использования научных знаний для практических целей.

И все же взгляды Платона в нескольких направлениях предвосхищают современные идеи, находящиеся сегодня на переднем крае научного мышления.

Хотя строительные «кирпичики» материи, которые предложил Платон, совсем не те, которые мы знаем сегодня, сама идея о том, что есть лишь немногие строительные элементы, существующие в множестве одинаковых копий, остается основополагающей.

Но даже если не принимать во внимание эту смутную вдохновляющую идею, более специфический принцип построения теории Платона – выделение структуры из симметрии – оставил свой след в веках. Мы приходим к небольшому числу особых структур из чисто математических соображений – соображений симметрии – и преподносим их Природе как возможные элементы ее строения. Тот вид математической симметрии, который избрал Платон, чтобы составить свой список составляющих элементов, весьма отличен от симметрии, которую мы используем сегодня. Но идея о том, что в основе Природы лежит симметрия, стала доминировать в нашем восприятии физической реальности. Умозрительная идея о том, что симметрия определяет структуру – т. е. что кто-то может использовать высокие требования математического совершенства, чтобы прийти к небольшому перечню возможных реализаций, а потом воспользоваться этим списком как руководством по построению модели мира, – стала нашей путеводной звездой на границах неизведанного, не нанесенных ни на одну карту. Эта идея почти кощунственна в своем безрассудстве, поскольку провозглашает, что мы можем разобраться, как действовал Мастер и точно узнать, как все было сделано. И, как мы увидим далее, она оказалась совершенно правильной.

Для того чтобы обозначить Творца физического мира, Платон использовал слово «демиург». Буквальное его значение – «мастер»; обычно его переводят словом «создатель», что не совсем верно. Это греческое слово Платон подобрал очень тщательно. Оно отражало его веру в то, что физический мир не является окончательной реальностью. Есть также вечный и вневременной мир Идей, которые существуют до какого-либо, с необходимостью несовершенного, физического воплощения и независимо от него. Беспокойный творческий ум – Мастер или Создатель – отливает свои создания из идей, используя последние как формы.

«Тимей» – непростое для понимания произведение, и всегда остается соблазн принять неясность или ошибку за глубину. Осознавая это, я нахожу тем не менее интересным и вдохновляющим то, что Платон не останавливается на платоновых телах, но размышляет о том, что атомы в иных формах, подобно физическим объектам, в свою очередь могут быть составлены из более примитивных треугольников. Детали, конечно, «даже не ошибочны», но интуиция, призывающая рассмотреть модель серьезно, говорить на ее языке и раздвигать границы, в корне верна. Идея о том, что атомы могут иметь составные части, предвосхищает современное стремление анализировать все глубже и глубже. А идея о том, что эти составные части в нормальных условиях не могут существовать как отдельные объекты, а обнаруживаются только как части более сложных объектов, возможно, как раз и реализуется в сегодняшних кварках и глюонах, вечно связанных внутри атомных ядер.


Еще от автора Фрэнк Вильчек
Основы реальности. 10 фундаментальных принципов устройства Вселенной

Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.


Тонкая физика. Масса, эфир и объединение всемирных сил

Перед вами — уникальная книга, исследующая подоплеку новейших физических идей о массе, энергии и природе вакуума. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки.Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.