Коснуться невидимого, услышать неслышимое - [7]
И. Мюллер первый утверждал, что любое раздражение зрительного нерва вызывает зрительное ощущение. Мы знаем теперь также, что температурные рецепторы реагируют, например, на химическое раздражение ментолом или давление, инициируя ощущение холода, а слуховой нерв можно раздражать электрическим током и получить слуховое ощущение. Перечисление подобных примеров можно продолжить. И сегодняшнее обращение к взглядам Мюллера обусловлено несомненным его влиянием на последующие исследования ученых, его глубоким пониманием того, что качество каждого сенсорного раздражителя зависит от активности и специфических свойств определенного сенсорного образования. Фактически в настоящее время, несмотря на более чем 150-летнюю историю вопроса, изучение сенсорной специфичности продолжается и еще далеко от своего окончательного разрешения.
Рассмотрим два аспекта сенсорной специфичности: 1) «локальный знак», показывающий место нахождения стимула в пространстве (для дистантных систем) и 2) модальность, т. е. качество стимула — свет, звук, прикосновение. Основное допущение, которое делали сторонники и последователи закона специфических энергий, состояло в том, что предусматривалось наличие ряда нервных окончаний, чувствительных к различным, но характерным для каждого типа окончаний видам стимуляции (в коже, например, тепло, холод, прикосновение и боль).
В 1862 г. немецкий физик и врач Г. Гельмгольц расширил представления И. Мюллера, высказав предположение о том, что каждое волокно слухового нерва вызывает ощущение звука определенной высоты. Такая детализация нервных элементов, создающих мозаику восприятия, неизбежно привела к представлению о наличии «линий связи» нейронов мозга с определенными периферическими нейронами. И когда к 1884 г. гистологами были открыты и описаны различные нервные окончания и рецепторные органы в коже, а также показаны дискретная природа кожной чувствительности и различия модальности раздражителей в определенных точках кожи, подавляющее большинство исследователей пришло к выводу, что должна существовать непременная зависимость между строением концевых рецепторных органов и специфической энергией органов чувств.
Рис. 5. Рецепторные клетки обонятельного эпителия млекопитающих.
1 — реснички, 2 — рецепторные клетки с аксонами (4), окруженные опорными клетками (3).
Рис. 6. Схемы вкусовой (А) и наружной волосковой слуховой клетки (Б).
А: 1 — рецепторная клетка, 2 — окончания чувствительного нерва. Прерывистые линии обозначают электрический ток, идущий при стимуляции. Б: 1 — стереоцилии — волоски на рецепторной поверхности клетки, 2 — базальное тельце волоска киноцилии, 3 — ретикулярная мембрана, 4 — пластинчатое тельце, 5 — плазматическая мембрана клетки, 6 — митохондрия, 7 — субмембранные пластинки, 8 — пальцевидный отросток, 9 — ядро, 10 — тельце Рециуса с множеством митохондрий, 11 — афферентное (передающее к мозгу) нервное окончание, 12 — эфферентное (передающее в клетку) нервное окончание, 13 — опорная клетка Дейтерса, от которой к поверхности кортиевого органа идет пальцевидный отросток.
В 1895 г. немецкий ученый М. Фрей предложил классификацию рецепторов, соотносящуюся с различными модальностями кожной чувствительности. За последующие 50—70 лет эксперименты Фрея неоднократно проверялись, но полученные разными авторами результаты были противоречивы или в лучшем случае сомнительны. В качестве примера рассмотрим данные, полученные при исследовании роговицы глаза. По Фрею, роговица глаза должна обладать чувствительностью только к холоду и боли, поскольку в ней обнаружены колбы Краузе и свободные нервные окончания. Однако, как выяснилось после проведения множества очень тонких в методическом отношении экспериментов, роговица оказалась чувствительной также к прикосновению и к теплу. Другой пример. Волосистая часть кожи головы и руки чувствительна ко всем видам стимуляции — прикосновению, вибрации, боли, теплу и холоду. А ведь здесь вокруг волосяных луковиц обнаруживаются преимущественно, а местами исключительно, свободные нервные окончания.
Результаты экспериментов, опровергающие точку зрения М. Фрея, были получены и с другой стороны. На тех местах кожи, где отмечаются те же четыре модальности кожных ощущений, обнаруживаются семь и более различных в структурном отношении рецепторов.
Структурное разнообразие рецепторов представляет собой широкое поле для научного поиска их структурнофункционального соответствия и выяснения истинного смысла подобного многообразия. И в то же время следует признать, что жесткая структурная специализация не является обязательным условием восприятия различных модальностей стимула. Перед нами вновь вопрос: каким же образом определить специфическую сенсорную функцию в восприятии различных модальностей раздражителя, если при исследовании каждой сенсорной системы — в особенности системы кожной чувствительности — мы имеем дело со множеством противоречащих друг другу, а подчас и взаимоисключающих фактов о соотношении структуры и функции?
Известно, что стимуляция рецепторных поверхностей различных органов чувств может осуществляться различными видами энергии. Например, в определенных условиях тактильные рецепторы, рецепторы давления в коже, фасциях, мышцах и связках, вестибулярные и даже болевые рецепторы способны реагировать на звуки и вибрации значительной интенсивности. Но ни один из перечисленных видов рецепторов нельзя сравнить с органом слуха по степени чувствительности к воздействию малых акустических энергий и по количеству получаемой таким образом информации о внешнем мире.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Что движет эволюцию жизни на нашей планете? В каком направлении развивается жизнь? Отчего «процветают» примитивные паразиты? Может ли разум человека влиять на судьбы Вселенной? На эти (и близкие им) вопросы делает попытку ответить автор, развивая энергетический подход к изучению живой природы.Книга будет интересна для биологов, физиков, химиков, биофизиков, а также всех интересующихся общими вопросами развития.
Книга посвящена фундаментальным механизмам старения и на их основе поиску путей продления жизни. Изложены современные данные о молекулярных, клеточных, системных механизмах старения. Обсуждается связь между старением и развитием болезней сердечно-сосудистой системы, рака, диабета. Подробно анализируются различные подходы к увеличению продолжительности жизни — ограниченная диета, двигательная активность, изменение температуры тела, физиологически активные вещества, энтеросорбция и др. Приводится комплекс мер по предупреждению преждевременного старения.
В истории развития органического мира Земли было несколько важнейших событий, таких, как возникновение жизни, появление эвкариот, затем многоклеточных организмов. 600 миллионов лет назад многоклеточные животные впервые получают возможность строить скелет, и о тех пор органический мир Земли приобретает все более сходные с современностью черты. Об условиях, в которых произошло это важное событие, и гипотезах о причинах появления скелета у животных идет речь в предлагаемой читателю книге.
Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.