Космос Эйнштейна. Как открытия Альберта Эйнштейна изменили наши представления о пространстве и времени - [40]
Эти звезды, надо сказать, выглядели настолько фантастично, что большинство физиков было уверено, что такие объекты невозможно обнаружить во Вселенной. Эддингтон, к примеру, сказал: «Должен существовать какой-то закон природы, который не давал бы звезде вести себя подобным абсурдным образом». В 1939 г. Эйнштейн попытался математически показать, что черная дыра невозможна. Он начал с изучения процесса формирования звезды, то есть с рассмотрения набора частиц, циркулирующих в пространстве и постепенно стягиваемых в одно место силой взаимного притяжения. Расчеты Эйнштейна показали, что обращающиеся вокруг общего центра частицы будут постепенно сближаться, но в конечном итоге остановятся на 1,5 радиусах Шварцшильда; следовательно, черная дыра не сможет сформироваться.
Расчет казался безупречным, но Эйнштейн, очевидно, упустил из виду возможность схлопывания вещества в самой звезде, вызванного сжимающим действием гравитационных сил, превосходящих все действующие в веществе ядерные силы. Такой более детализированный расчет опубликовали в 1939 г. Роберт Оппенгеймер и его ученик Хартланд Снайдер. Начали они не с набора частиц, обращающихся вокруг общего центра, а со статичной звезды, достаточно большой, чтобы ее мощная гравитация могла преодолеть действующие внутри звезды квантовые силы. Нейтронная звезда представляет собой большой шар размером с Манхэттен (примерно 30 км в поперечнике), состоящий из нейтронов, – этакое своеобразное гигантское ядро. От коллапса этот нейтронный шар удерживает сила Ферми, которая не позволяет более чем одной частице с определенными квантовыми числами (например, спином) находиться в одинаковом состоянии. Если гравитационная сила достаточно велика, она может преодолеть силу Ферми и таким образом сжать звезду до радиуса Шварцшильда и больше; науке неизвестны силы, которые могли бы при этом предотвратить полный коллапс. Однако должно было пройти еще около 30 лет, прежде чем нейтронные звезды и черные дыры были обнаружены, поэтому статьи о потрясающих свойствах черных дыр долгое время считались совершенно умозрительными.
Эйнштейн по-прежнему скептически относился к черным дырам, но был убежден, что рано или поздно сбудется другое его предсказание: будут открыты гравитационные волны. Как мы уже видели, одним из триумфальных достижений уравнений Максвелла было предсказание того факта, что электрическое и магнитное поля образуют движущуюся волну, доступную наблюдению. Аналогично, размышлял Эйнштейн, не допускают ли его уравнения существование гравитационных волн? В ньютоновом мире гравитационных волн быть не может, поскольку сила тяготения действует мгновенно по всей Вселенной, затрагивая все объекты одновременно. Но в общей теории относительности гравитационные волны в определенном смысле должны существовать, поскольку колебания гравитационного поля не могут распространяться быстрее, чем со скоростью света. Таким образом, к примеру, катаклизм, такой как столкновение двух черных дыр, породит ударную волну гравитации – гравитационную волну, распространяющуюся со скоростью света.
Еще в 1916 г. Эйнштейн сумел показать, что в некотором приближении его уравнения действительно показывают волнообразные движения гравитации. Эти волны, как и ожидалось, распространялись по ткани пространства-времени со скоростью света. В 1937 г. Эйнштейну и его студенту Натану Розену удалось найти точное решение уравнений, выдающее (уже без всякого приближения) гравитационные волны. Эти волны стали уверенным предсказанием общей теории относительности. Однако сам Эйнштейн не надеялся когда-либо увидеть это явление. Расчеты показывали, что оно лежало далеко за пределами экспериментальных возможностей ученых того времени. Должно было пройти почти 80 лет с того момента, когда Эйнштейн впервые обнаружил гравитационные волны в своих уравнениях, прежде чем Нобелевская премия досталась физикам, получившим первые косвенные свидетельства их существования. Не исключено, что гравитационные волны будут зарегистрированы лет через девяносто после его первого предсказания. В свою очередь, они вполне могут оказаться средством, при помощи которого можно будет разобраться в Большом взрыве и найти единую теорию поля.
В 1936 г. чешский инженер Руди Мандль предложил Эйнштейну еще одну идею, связанную со странными свойствами пространства и времени. Нельзя ли, спросил он, использовать гравитацию какой-нибудь близкой звезды в качестве линзы для усиления света далеких звезд, точно так же, как стеклянная линза используется для усиления света? В свое время, в 1912 г., Эйнштейн уже рассматривал такую возможность, но теперь, после вопроса Мандля, вернулся к этой теме и рассчитал, что линза, о которой идет речь, породила бы для земного наблюдателя кольцеобразную структуру. Представим, к примеру, свет далекой галактики, проходящий рядом с близкой галактикой. Гравитация близкой галактики может расщепить световой луч надвое, так что части луча пройдут от нее по разные стороны. Миновав близкую галактику, лучи вновь сольются. С Земли эти лучи видны будут как световое кольцо – оптическая иллюзия, порожденная тем, что свет далекой галактики отклоняется под действием гравитации и обходит близкую галактику. Однако Эйнштейн заключил, что у нас «мало надежды увидеть такой феномен непосредственно». Более того, он написал, что эта работа «не имеет особой ценности, но бедняга [Мандль] будет счастлив». И вновь Эйнштейн так далеко обогнал свое время, что прошло 60 лет, прежде чем линзы и кольца Эйнштейна были обнаружены и со временем стали незаменимыми инструментами, при помощи которых астрономы исследуют далекий космос.
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.
Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего.
Прямое мысленное общение с компьютером, телекинез, имплантация новых навыков непосредственно в мозг, видеозапись образов, воспоминаний и снов, телепатия, аватары и суррогаты как помощники человечества, экзоскелеты, управляемые мыслью, и искусственный интеллект. Это все наше недалекое будущее. В ближайшие десятилетия мы научимся форсировать свой интеллект при помощи генной терапии, лекарств и магнитных приборов. Наука в этом направлении развивается стремительно. Изменится характер работы и общения в социальных сетях, процесс обучения и в целом человеческое развитие.
Еще совсем недавно нам трудно было даже вообразить сегодняшний мир привычных вещей. Какие самые смелые прогнозы писателей-фантастов и авторов фильмов о будущем имеют шанс сбыться у нас на глазах? На этот вопрос пытается ответить Мичио Каку, американский физик японского происхождения и один из авторов теории струн. Из книги вы узнаете, что уже в ХXI в., возможно, будут реализованы силовые поля, невидимость, чтение мыслей, связь с внеземными цивилизациями и даже телепортация и межзвездные путешествия.
Кому как не ученым-физикам рассуждать о том, что будет представлять собой мир в 2100 году? Как одним усилием воли будут управляться компьютеры, как силой мысли человек сможет двигать предметы, как мы будем подключаться к мировому информационному полю? Возможно ли это? Оказывается, возможно и не такое. Искусственные органы; парящие в воздухе автомобили; невероятная продолжительность жизни и молодости — все эти чудеса не фантастика, а научно обоснованные прогнозы серьезных ученых, интервью с которыми обобщил в своей книге Мичио Каку.Издание подготовлено при поддержке Фонда Дмитрия Зимина «Династия».
Эта книга, конечно же, не развлекательное чтение. Это то, что называется «интеллектуальный бестселлер». Чем, собственно, занимается современная физика? Какова нынешняя модель Вселенной? Как понимать «многомерность» пространства и времени? Что такое параллельные миры? Автор этой книги, Мичио Каку, очень авторитетный ученый-физик. Поэтому в «Параллельных мирах» вы не найдете помпезной «псевдонауки». Мичио Каку — опытный литератор. Он умеет писать просто. И в этой книге вы не найдете сложных математических формул.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Литературная работа известного писателя-казахстанца Павла Косенко, автора книг „Свое лицо“, „Сердце остается одно“, „Иртыш и Нева“ и др., почти целиком посвящена художественному рассказу о культурных связях русского и казахского народов. В новую книгу писателя вошли биографические повести о поэте Павле Васильеве (1910—1937) и прозаике Антоне Сорокине (1884—1928), которые одними из первых ввели казахстанскую тематику в русскую литературу, а также цикл литературных портретов наших современников — выдающихся писателей и артистов Советского Казахстана. Повесть о Павле Васильеве, уже знакомая читателям, для настоящего издания значительно переработана.».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Флора Павловна Ясиновская (Литвинова) родилась 22 июля 1918 года. Физиолог, кандидат биологических наук, многолетний сотрудник электрофизиологической лаборатории Боткинской больницы, а затем Кардиоцентра Академии медицинских наук, автор ряда работ, посвященных физиологии сердца и кровообращения. В начале Великой Отечественной войны Флора Павловна после краткого участия в ополчении была эвакуирована вместе с маленький сыном в Куйбышев, где началась ее дружба с Д.Д. Шостаковичем и его семьей. Дружба с этой семьей продолжается долгие годы. После ареста в 1968 году сына, известного правозащитника Павла Литвинова, за участие в демонстрации против советского вторжения в Чехословакию Флора Павловна включается в правозащитное движение, активно участвует в сборе средств и в организации помощи политзаключенным и их семьям.
21 мая 1980 года исполняется 100 лет со дня рождения замечательного румынского поэта, прозаика, публициста Тудора Аргези. По решению ЮНЕСКО эта дата будет широко отмечена. Писатель Феодосий Видрашку знакомит читателя с жизнью и творчеством славного сына Румынии.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.