Космические твердотопливные двигатели - [8]

Шрифт
Интервал

Использование РДТТ мягкой посадки началось с 1964 г. при полете корабля «Восход-1».

«Союз». Для быстрого покидания зоны пожара или взрыва, когда экипаж находится в спускаемом аппарате в режиме проверок бортовых систем, на корабле «Союз» предусмотрена специальная аварийная система покидания старта. Эта система аварийного спасения (САС) корабля «Союз» стала применяться с 1967 г., с появлением более усовершенствованного варианта трехступенчатой РН «Восток». САС может вводиться на конечном этапе предстартовой подготовки, когда обслуживающий персонал уже покинул стартовую позицию, а фермы обслуживания РН и космического корабля разведены. С помощью этой системы корабль уводится из аварийной зоны на высоту, достаточную для отделения спускаемого аппарата и введения в действие парашютной системы посадки.

Двигательная установка САС корабля «Союз» представляет собой установку из РДТТ трех типов (см. рис. на первой странице обложки). В верхней части системы расположен многосопловой РДТТ отделения САС и обтекателя, защищающего корабль от аэродинамического нагрева во время прохождения ракетой плотных слоев атмосферы. Непосредственно к обтекателю крепится основной РДТТ (тяга 750 кН, масса топливного заряда 1 т) с 12 соплами, развернутыми под углом 30° к продольной оси РН. Под обтекателем этого двигателя находятся четыре РДТТ управления, которые обеспечивают разворот и увод спускаемого аппарата и орбитального отсека корабля в сторону от опасной зоны,

В результате срабатывания САС корабль может подниматься на высоту до 1200 м и отбрасываться от места старта на расстояние до 3 км (в зависимости от направления ветра).

РДТТ нашли применение в системах приземления космического корабля «Союз» (наряду с парашютной системой). Посадка спускаемого аппарата происходит так. Непосредственно у Земли, за 10 мин до посадки, отделяется уже ненужный передний теплозащитный экран, закрывающий двигатели мягкой посадки, расположенные в лобовой части спускаемого аппарата. При этом экипаж начинает готовиться к приземлению и взводится система амортизации кресел, в которых группируются космонавты. У самой Земли, на высоте около 1 м, включается шесть РДТТ мягкой посадки (тяга несколько килоньютонов, масса заряда РДТТ 9 кг, время работы доли секунды). Эти двигатели окончательно гасят скорость, с которой спускаемый аппарат снижается на парашюте (примерно 7–8 м/с), практически до 0 м/с.

РДТТ систем аварийного спасения американских космических кораблей.«Меркурий». На первом американском космическом корабле в случае аварии на старте и на начальном участке выведения использовалась система аварийного спасения с РДТТ, который обеспечивал увод корабля на высоту до 760 м. Затем с помощью парашютной системы корабль мог осуществлять посадку на воду. Твердотопливный двигатель САС корабля «Меркурий» (рис. 5) мог создать максимальную перегрузку до 30 g и развивать тягу 230 кН в течение ~ 1 с. РДТТ устанавливался так, чтобы равнодействующая тяги, развиваемой его тремя соплами, была смещена относительно центра масс корабля для обеспечения отделения корабля в поперечном направлении относительно траектории полета РН.

После отделения корабля от РН на безопасное расстояние предусматривался сброс фермы с РДТТ увода, уже выполнившим свою задачу. Для этого предназначался другой РДТТ (тоже с тремя соплами), который мог развивать тягу 3,6 кН в течение 1,5 с. При нормальном ходе полета САС сбрасывалась на определенной высоте, а РН с кораблем продолжали полет.

В практике пилотируемых полетов космического корабля «Меркурий» САС не использовалась. Однако было осуществлено срабатывание этой системы во время первого запуска экспериментального (непилотируемого) космического корабля «Меркурий» (25 апреля 1961 г.), выведенного на орбиту со специальной установкой («роботом») на борту, имитирующей дыхание, температуру, и речь человека. РН была подорвана по команде с Земли через 30 с после старта, но перед подрывом САС отделила корабль, который опустился на парашюте на воду и был подобран вертолетом через 25 мин после запуска. Этот случай на практике доказал целесообразность использования РДТТ в системах аварийного спасения космических кораблей.


Рис. 5. Система аварийного спасения космического корабля «Меркурий»:

1 — РДТТ увода корабля; 2 — РДТТ сброса САС; 3 — ферма; 4 — космический корабль; 5 — РДТТ отделения корабля от РН на орбите; 6 — РДТТ торможения корабля при сходе с орбиты


Рис. 6. Система аварийного спасения космического корабля «Аполлон»:

1 — РДТТ для управления траекторией полета (отвода корабля в сторону); 2 — РДТТ сброса САС; 3 — РДТТ увода корабля; 4 — отсек с экипажем


«Джемини». Аварийное спасение космонавтов при помощи катапультируемых кресел ограничено скоростью и высотой полета в момент катапультирования. В некоторых космических кораблях вместо САС использовались катапультируемые кресла с применением РДТТ. Например, в космическом корабле «Джемини» сигнал на катапультирование обоих космонавтов мог подать любой из них, для чего он должен был вытянуть кольцо из контейнера, установленного между ногами. За креслами космонавтов находились рельсы, которые служили направляющими при катапультировании. Катапультирование осуществлялось с помощью пиропатронов. Причем система блокировки предотвращала срабатывание патронов до того, как с помощью взрывных болтов открывались посадочные люки (их два), через которые выбрасываются кресла с космонавтами.


Еще от автора Герман Алексеевич Назаров
Мифы советской эпохи

Герман Назаров — инженер-ракетчик, журналист, исследователь российской истории XX века. На основании архивных документов разоблачает исторические мифы, восстанавливает "белые пятна", образовавшиеся в результате партийной цензуры, причем не только коммунистической, но и постсоветского периода: от восстания на броненосце "Потемкин" до трагедии на атомном ракетоносце «Курск».


Да были же, были американцы на Луне!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Какое-то безумие тлело в нём…

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Галактики. Большой путеводитель по Вселенной

Галактики – это своеобразные «кирпичики» в бескрайнем «здании» Вселенной. Возникшие из пыли Большого Взрыва, эти «кирпичики» не находятся в состоянии покоя вот уже 13 миллиардов лет – они продолжают изменяться. Джеймс Гич рассказывает увлекательную историю эволюции самых красочных элементов космоса: как возникли галактики; почему их так много, они отличаются размерами, яркостью и формой; и как им удалось вырастить в своих недрах черные дыры. Как практикующий исследователь Гич приподнимает завесу тайны над работой астрофизика: они борются за финансирование, пишут заявки на доступ к телескопам в последний момент перед дедлайном ради азарта увидеть то, что еще не было доступно глазу человека.


Искусственный спутник земли

В книге, написанной на основе отечественных и иностранных источников, рассказывается о создании и запуске в СССР первых в мире искусственных спутников Земли (ИСЗ), о теоретических вопросах, которые необходимо было разрешить при этом. В ней последовательно излагаются этапы освоения космоса, начиная с осуществления необитаемого и неавтоматизированного искусственного спутника Земли и кончая изложением вопросов создания межпланетных станций и космических кораблей. Книга рассчитана на воинов Советской Армии, Авиации и Флота, поэтому в ней уделено внимание описанию военного значения ИСЗ и межпланетных станций. В целом автор стремился не перегружать книгу техническими подробностями и излагал материал в возможно более популярной и доступной для широкого читателя форме.


Путешествие к эпицентру полемики

В статье выдвинута и обоснована гипотеза Тунгусского метеорита как высокоэнергетического лазерного локационного сигнала со стороны звездной системы 61-ой Лебедя.


Дорога на космодром

Книгу известного популяризатора науки и техники Ярослава Голованова «Дорога на космодром» можно назвать своеобразной историей мировой космонавтики, охватывающей период от мифологического Икара до ставшего легендарным Юрия Гагарина. В ней прослежен многовековой путь человеческой мечты о полете в космическое пространство, и в этом смысле «Дорога на космодром» – биография идеи. И составлена она, подобно мозаичной картине, из биографий конкретных людей разных времен и народов, прокладывавших дорогу к сегодняшним стартовым площадкам.


Играй и читай

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Космические двигатели будущего

В брошюре сделана попытка представить себе возможные пути развития космических двигательных систем завтрашнего дня. Рассматривается ряд традиционных и новых идей и проектов в области космических двигателей, их возможности и соответствие тем — задачам, которые по сегодняшним представлениям станут наиболее актуальными в не очень отдаленной перспективе.Брошюра рассчитана на широкий круг читателей.


Сергей Павлович Королев

В статьях, помещенных в этом сборнике, рассказывается о жизни и деятельности проелавленного конструктора, об истории создания первых искусственных спутников Земли и космических кораблей.Брошюра рассчитаны на широкий круг читателей.


Космические аппараты исследуют Луну

Брошюра посвящена 20-летию выдающегося события в истории человечества — запуску в январе 1959 г. в СССР автоматической станции «Луна-1», которая впервые в мире достигла окрестностей другого небесного тела. Приводится описание первых «разведчиков космоса» — советских автоматических станций «Луна», показано, какую эволюцию претерпела сейчас советская «лунная» космическая техника, даны краткие научные итоги космических исследований Луны.Брошюра рассчитана на инженеров, преподавателей и студентов вузов, учащихся старших классов, а также на более широкий круг читателей, интересующихся вопросами космонавтики.


С. П. Королев (к 70-летию со дня рождения)

12 января 1977 г. исполняется 70 лет со дня рождения выдающегося ученого нашей страны, основоположника практической космонавтики, академика Сергея Павловича Королева. В статьях, помещенных в этом сборнике, рассказывается о жизни и деятельности прославленного конструктора, об истории создания первых искусственных спутников Земли и космических кораблей.Брошюра рассчитана на широкий круг читателей.


Космическая технология и производство

В брошюре популярно излагаются физические основы космической технологии и рассматриваются перспективные направления космического производства — космическая металлургия, получение полупроводниковых материалов, стекла, биологически активных препаратов и т. д., — имеющие большое народнохозяйственное значение. Рассказывается о результатах экспериментов по космическому производству во время полетов советских космических кораблей «Союз» и орбитальных научных станций «Салют», а также на американских космических аппаратах.Брошюра рассчитана на широкий круг читателей.