Космические твердотопливные двигатели - [3]
Кроме того, создание зарядов из дымного пороха, которые бы могли гореть свыше 1–3 с, представлялось неразрешимой проблемой: по прошествии этого короткого времени давление в камере сгорания резко возрастало, и происходил взрыв. Дело в том, что топливные заряды, запрессованные в цилиндрические корпуса и сгорающие с торца, могли растрескиваться под воздействием рабочего давления (или даже еще раньше — в процессе хранения). Более того, горячие газы могли проникать между стенкой корпуса и зарядом, воспламеняя боковые поверхности заряда; эти поверхности могли воспламеняться также из-за нагрева через металлический корпус.
В конце XIX в, во Франции (П. Вьель, 1884), а затем в Швеции (А. Нобель), России (Д. И. Менделеев) и других странах были разработаны различные составы бездымного пороха, намного превосходящего по эффективности прежний, дымный. Новый порох, получивший также название коллоидного, большей частью представляет собой твердый раствор органических веществ, которые являются сложными эфирами азотной кислоты (например, раствор нитроцеллюлозы в нитроглицерине). Оба этих компонента содержат одни и те же химические элементы (С, Н, О, N), однако в разной пропорции, и поэтому в составе пороха нитроцеллюлоза выполняет роль окислителя, а нитроглицерин — горючего.
При смешении компонентов жидкий нитроглицерин растворяет твердую нитроцеллюлозу, и получается продукт, поддающийся формованию под давлением, что дает возможность изготавливать пороховые заряды (шашки) путем прессования. В это двухкомпонентное, или двухосновное топливо вводятся также дополнительные вещества-пластификаторы и другие добавки.
Бездымные пороха сразу же получили широкое применение в артиллерии, поскольку значительно увеличивали мощь огня и не демаскировали боевые позиции при выстрелах. К этому времени уже применялось нарезное ствольное оружие, и пороховые ракеты в значительной степени утратили свою роль (так как уступали указанному оружию по дальности и меткости стрельбы).
С созданием бездымного пороха вновь возродился интерес к РДТТ, и в конце XIX — начале XX в. в ряде стран не только были высказаны идеи о создании ракет на бездымном порохе, но и проведены соответствующие эксперименты. В 1895 г. Т. Унге (Швеция) испытал подобные ракеты в полете (после чего отказался от использования нового пороха), а в 1915–1916 гг. Р. Годдард (США) провел эксперименты с небольшими РДТТ и получил опытные данные, необходимые ему для обоснования идеи о создании ракеты на бездымном порохе для полета на Луну. В России еще в 1881 г. Н. И. Кибальчич предложил проект летательного аппарата на бездымном порохе для полетов по воздуху, а в 1916 г. П. И. Граве подал заявку и в 1924 г. получил отечественный патент на боевые и осветительные ракеты с бездымным порохом.
Выяснилось, однако, что артиллерийские пороха не пригодны для использования в ракетах. Дело в том, что эти пороха изготавливались в виде зерен, лент и тонких трубок, с тем чтобы получить бóльшую поверхность горения. При выстреле весь пороховой заряд мгновенно превращался в газ с давлением в сотни мегапаскалей и снаряд с высокой скоростью выбрасывался из орудия. Для ракет же требовались пороховые шашки достаточно больших размеров (т. е. с толстым сводом), чтобы продолжительность горения измерялась хотя бы секундами. Кроме того, необходимо было добиться, чтобы при существенно меньшем рабочем давлении горение происходило стабильно. Оказалось, что шашки с толстым сводом, изготавливаемые из артиллерийского пороха, коробятся и растрескиваются после прессования и сушки. (Последняя операция производилась с целью удаления применявшегося спирто-эфирного растворителя-пластификатора, который представлял собой летучий продукт.)
Создание топливных зарядов для РДТТ на основе бездымного пороха с использованием нелетучего растворителя оказалось трудной задачей. В нашей стране она была решена в середине 20-х годов в результате сотрудничества ученых Газодинамической лаборатории (Н. И. Тихомиров, В. А. Артемьев) и Российского института прикладной химии (С. А. Сериков, М. Е. Серебряков, О. Г. Филиппов). В 1929 г. сотрудниками этих двух ленинградских организаций была разработана полупроизводственная технология изготовления одноканальных шашек с толстым сводом методом прессования, пироксилин-тротиловой массы в глухих матрицах, обогреваемых паром. Причем в пороховой мастерской Газодинамической лаборатории наладили изготовление шашек диаметром до 40 мм.
Быстрыми темпами велись работы по созданию пороховых реактивных снарядов. В 1930 г. эти работы возглавил Б. С. Петропавловский, а в 1934 г. Г. Э. Лангемак, под руководством которого Реактивный научно-исследовательский институт довел разработку снарядов до их успешных войсковых испытаний (эти снаряды явились основой знаменитого реактивного оружия «Катюша»).
Последний шаг на пути к созданию современных РДТТ был сделан во второй половине 40-х годов сотрудниками лаборатории реактивных двигателей (США), которые предложили в качестве твердого ракетного топлива кристаллические частицы перхлората калия (KClO
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Герман Назаров — инженер-ракетчик, журналист, исследователь российской истории XX века. На основании архивных документов разоблачает исторические мифы, восстанавливает "белые пятна", образовавшиеся в результате партийной цензуры, причем не только коммунистической, но и постсоветского периода: от восстания на броненосце "Потемкин" до трагедии на атомном ракетоносце «Курск».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Прошедший год принёс новые достижения в освоении космоса. Советские автоматические станции провели широкий комплекс исследований Марса и Венеры. «Луна 20» доставила на Землю грунт из материкового района Луны. Вокруг Земли несут круглосуточную вахту спутника «Прогноз». Достигнут ряд важных соглашений между СССР и США в области исследования космоса. Сборник, составленный по материалам, опубликованным в центральной печати, рассказывает об этих достижениях. Комментарии известных советских ученых знакомят читателя с широким кругом проблем.
Кто мы? Откуда мы пришли? Куда идем? Ответы на эти вопросы менялись по мере "взросления" человечества. На каждом этапе этого пути человек, глядя на звезды, объяснял космос с помощью мифов. О старых и новых космических мифах и рассказывается в этой брошюре.
Создание спускаемых аппаратов ознаменовало собой новый этап в развитии космонавтики, связанный с началом пилотируемых полетов в космос и существенным прогрессом в космических исследованиях далеких тел Солнечной системы. Об этих аппаратах, их конструкции, системах и назначении и рассказывается в брошюре.Брошюра рассчитана на широкий круг читателей, интересующихся современными проблемами космической техники.
В брошюре популярно излагаются физические основы космической технологии и рассматриваются перспективные направления космического производства — космическая металлургия, получение полупроводниковых материалов, стекла, биологически активных препаратов и т. д., — имеющие большое народнохозяйственное значение. Рассказывается о результатах экспериментов по космическому производству во время полетов советских космических кораблей «Союз» и орбитальных научных станций «Салют», а также на американских космических аппаратах.Брошюра рассчитана на широкий круг читателей.