Космические двигатели будущего - [4]

Шрифт
Интервал

>x). ЖРД имеет существенно большую скорость истечения, и поэтому оказывается выгодным снизить ее до оптимальной за счет добавления лунной пыли к рабочему телу (желательно тех ее компонентов, которые испаряются при рабочей температуре двигателя), если на ракете имеются пустые баки, освободившиеся при ее посадке на Луну.[2] В результате этой операции полезный груз может быть увеличен в зависимости от вида ракетного топлива на 20–50 %.

Рис. 3. Классификация автономных двигателей


Другим важным параметром, по которому сравниваются между собой ракетные двигатели, является тяга, т. е. сила, создаваемая двигателем для ускорения ракет. Величина тяги равна произведению секундного расхода отбрасываемой массы (рабочего тела двигателя) на скорость истечения. По этому параметру различают двигатели большой тяги, когда тяга превосходит вес ракеты и последняя может стартовать с поверхности Земли, и малой тяги, пригодные лишь для старта с орбиты спутника.

Разделение на двигатели малой и большой тяги непосредственно связано с еще одним параметром — удельной массой двигателя, равной отношению веса двигателя к развиваемой им тяге. Естественно, что двигатели с удельным весом больше единицы должны быть отнесены к двигателям малой тяги.

Рассмотрим теперь перспективные схемы автономных двигателей, а также способы улучшения существующих схем с точки зрения улучшения рассмотренных параметров, и в первую очередь скорости истечения.[3] Однако прежде отметим, что по способу преобразования энергии в кинетическую энергию отбрасываемой массы можно выделить два основных класса ракетных двигателей — тепловые и электрические (рис. 3). Кроме того, существуют двигатели взрывные, фотонные и др.

Тепловые двигатели. Основной механизм преобразования энергии в тепловых двигателях, как и в любых тепловых машинах (газовых турбинах, двигателях внутреннего сгорания), — это расширение газа, предварительно сжатого и нагретого до высокой температуры. Устройством, осуществляющим это преобразование, является реактивное сопло (профилированный канал переменного сечения), через которое происходит истечение рабочего тела во внешнее пространство.

Скорость истечения на выходе из сопла прямо пропорциональна корню квадратному из температуры рабочего тела и обратно пропорциональна его молекулярному весу. Термодинамический КПД сопла как тепло-. БОЙ машины определяется разностью температур газа на входе и на выходе из сопла, которая, в свою очередь, зависит от относительного перепада давлений, т. е. зависит от степени расширения газа. Степень расширения газа ограничена размерами и весом двигателя, и поэтому в реальных конструкциях термодинамический КПД не превосходит 60–70 %.

Таким образом, имеются лишь две возможности улучшения характеристик тепловых ракетных двигателей — повышение температуры рабочего тела и снижение его молекулярного веса.

Предельные возможности химических двигателей. В тепловых двигателях, использующих энергию химических реакций, к которым относятся широко распространенные в наше время ЖРД и твердотопливные ракетные двигатели (РДТТ), рабочее тело образуется в результате реакции горючего с окислителем. Температура рабочего тела определяется теплотой реакции, а молекулярный вес — молекулярным весом продуктов реакции. Приведенные в табл. 1 химические реакции дают оптимальное соотношение между молекулярным весом и температурой с точки зрения получения наибольшей скорости истечения.

В настоящее время химические ракетные двигатели почти достигли предела своих оптимальных характеристик. Наиболее оптимальные реакции с использованием кислорода в качестве окислителя освоены давно: кислород-керосиновые и водород-кислородные двигатели уже много лет используются в космической технике. Некоторое улучшение характеристик может быть получено при использовании фторсодержащих окислителей. Но так как фтор является химически весьма агрессивным веществом, то сравнительно небольшой выигрыш в удельной тяге, который может оправдать применение этого химического элемента, едва ли оправдает эксплуатационные неудобства.

Наиболее радикальный путь улучшения характеристик химических двигателей — это использование реакций рекомбинации свободных радикалов. Свободным радикалом называют электрически нейтральный атом или группу атомов с неустойчивым состоянием электронной оболочки, которые получаются в результате диссоциации молекулярных соединений. Например, в реакции Н2О → ОН + Н гидроксильный остаток и атомарный водород являются радикалами. Наибольшей энергией обладает реакция образования молекулы водорода Н + Н → Н>2 (удельная энергия этой реакции соответствует скорости истечения около 30 км/с).

Однако из-за высокой склонности свободных радикалов к слиянию в устойчивую молекулу их накопление и хранение возможно лишь при температурах, близких 0 К, когда резко снижаются скорости химических реакций. Но и при 0 К остается возможность для так называемых туннельных реакций. Поэтому в чистом виде свободные радикалы хранить невозможно. Предполагается вмораживать радикалы в нейтральную матрицу (например, атомарный водород помещать в кристаллическую решетку твердого водорода), при этом концентрация свободных радикалов принципиально не может превосходить 50 %.


Еще от автора Александр Сергеевич Дмитриев
Основные вехи творческого пути Генриха Манна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
За новыми горизонтами. Первый полет к Плутону

14 июля 2015 г. произошло удивительное событие. Более чем в 4,8 млрд км от Земли маленький космический аппарат NASA под названием «Новые горизонты» промчался мимо Плутона со скоростью более 50 000 км/ч, направив все свои приборы на таинственные ледяные миры, а затем продолжил путешествие к дальним пределам Солнечной системы. Ничего подобного не случалось на памяти целого поколения — исследований новых миров не было со времен полетов «Вояджеров» к Урану и Нептуну, — и ничего похожего на это не планировалось в будущем.


Гонка за Нобелем. История о космологии, амбициях и высшей научной награде

Инсайдерская история о том, как ученые пытались открыть одну из главных тайн космологии и сбились с пути, обольщенные блеском Нобелевского золота. Каково это — быть очевидцем Большого взрыва? В 2014 году астрономы, вооруженные самым мощным в истории наземным радиотелескопом BICEP2, сочли, что увидели искру, воспламенившую Большой взрыв. Миллионы человек по всему миру смотрели прямую трансляцию пресс-конференции из Гарвардского университета, на которой было объявлено об этом эпохальном открытии.


Мировые загадки сегодня

Существует ли окружающий мир и таков ли он, каким нам представляется? Что такое материя и движение? Есть ли целесообразность в природе? Является ли возникновение сознания неразрешимой загадкой? Эти и многие другие вопросы разбирает в своей книге известный популяризатор науки писатель Игорь Адабашев. Книга убедительно показывает, что человек способен познать окружающий мир, что «мировые загадки», о которых говорят христианские богословы и философы-идеалисты, не что иное, как еще не познанные, но вполне познаваемые явления природы.


Всего шесть чисел. Главные силы, формирующие Вселенную

В книге всемирно известного астрофизика, члена Королевского астрономического общества сэра Мартина Риса описываются фундаментальные силы, управляющие нашей Вселенной. Автор утверждает, что расширяющаяся Вселенная может быть определена всего шестью числами: N, e, Ω, l, Q, D, каждое из которых играет особую и решающую роль в ее эволюции, а вместе они определяют ее развитие и потенциал возможностей. Два из них связаны с основными силами; другие два определяют размер и общую структуру Вселенной и показывают, будет ли она существовать вечно; еще два говорят о свойствах самой Вселенной.


Прорыв за край мира

Последние несколько лет стали эпохой триумфа теории космологической инфляции, объясняющей происхождение Вселенной. Эта теория зародилась в начале 1980-х годов на уровне идей, моделей и сценариев, давших ряд четких проверяемых предсказаний. Сейчас благодаря прецизионным измерениям реликтового излучения, цифровым обзорам неба и другим наблюдениям эти предсказания подтверждаются одно за другим. В книге отражено развитие главных идей космологии на протяжении последних ста лет, при этом главное внимание уделено теории космологической инфляции.


Записки наблюдателя туманных объектов

«Записки наблюдателя туманных объектов» — совокупность статеек, которая в конце 2009 года выросла в отдельную книгу. Насколько она удалась — судить вам. К работе над ними я приступил после 15 лет наблюдения звездного неба в пятнадцатисантиметровый телескоп. В «Записках» я не пытался описать как можно больше сокровищ звездного неба, а просто хотел поделиться своими впечатлениями и радостью от их созерцания. На данной странице можно найти и отдельные статьи в том виде, в каком они были опубликованы в журнале «Небосвод».