Космические двигатели будущего - [3]

Шрифт
Интервал

На рис. 2 дан график зависимости характеристической скорости от скорости истечения для различных чисел Циолковского. Из сравнения этого графика с данными табл. 1 можно сделать вывод о том, что все задачи космических полетов легко решить, используя в качестве ракетного топлива уран-235, не говоря уже о дейтерии и тритии. Действительно, для характеристической скорости 50 км/с, необходимой для полета к планетам, число Циолковского при скорости истечения, соответствующей энергии деления урана, равно 5,5 · 10>–3. Даже при КПД двигателя, равном 1 %, отношение массы урана к массе ракеты будет всего 0,056.

Однако для достижения расчетной скорости истечения в двигателе должны прореагировать все атомы урана. Поскольку для осуществления самоподдерживающейся ядерной реакции деления необходима масса делящегося вещества, не меньшая так называемой критической (для урана примерно 1 кг), то при этом в двигателе за время около 10>–6 с выделится громадная энергия 10>13 Дж. Переход даже части этой энергии в кинетическую энергию ракеты за столь короткое время соответствует чрезвычайно большим ускорениям, а следовательно, и перегрузкам, которые не в состоянии выдержать никакая конструкция ракеты. Кроме того, продукты реакции имеют температуру более 50 млн. К, и взаимодействие их со стенками двигателя приведет к его тепловому разрушению.


Рис. 2. Зависимость характеристической скорости от скорости истечения для различных чисел Циолковского


В случае замедленной управляемой ядерной реакции, которая осуществляется в атомных реакторах, осколки деления теряют энергию на столкновения с еще не прореагировавшими атомами, концентрация которых на несколько порядков больше, и в целом все делящееся вещество приобретает энергию, намного меньшую удельной энергии ядерной реакции. Использовать эту энергию для создания скорости истечения самого делящегося вещества невыгодно, так как будет теряться слишком много энергии в виде внутренней энергии непрореагировавших ядер, и, следовательно, КПД двигателя будет недопустимо низким.

В связи с этими ограничениями использование ядерных реакций в ракетных двигателях в первую очередь предполагает передачу энергии нейтральной массе, запасаемой на борту ракеты, т. е. источники энергии и отбрасываемой массы оказываются разделенными.

Следует отметить следующую принципиальную разницу в требованиях к скорости истечения для таких двигателей и для двигателей, в которых рабочее тело является одновременно и источником энергии. Режим — полета с постоянной скоростью истечения, описываемый уравнением Циолковского, не выгоден с точки зрения тяговых потерь (тяговый КПД равен 100 % лишь в той точке траектории, где скорость истечения равна скорости ракеты). Действительно, как следует из рис. 1, для типичного двигателя с постоянной скоростью истечения (ЖРД) потери, связанные с кинетической энергией отбрасываемой массы, составляют около половины всех потерь.

Однако из анализа уравнений движения ракеты следует, что для двигателей, использующих в качестве источника энергии внутреннюю энергию рабочего тела, при максимально возможной для данного двигателя скорости истечения минимальное значение числа Циолковского обеспечивается независимо от величины характеристической скорости. В двигателях же с разделенными источниками энергии и отбрасываемой массы режим ускорения ракет с постоянной скоростью истечения уже не является оптимальным, и повышение тягового КПД может существенно улучшить характеристики ракеты. Скорость истечения в этом случае должна увеличиваться пропорционально скорости ракеты.

Зависимости, описывающие конкретные значения скорости истечения, достаточно сложны и мы на них не будем останавливаться. Кроме того, двигатели с переменной скоростью истечения трудно осуществить на практике. Поэтому двигатели с разделенными источниками энергии и отбрасываемой массой целесообразно характеризовать некоторой средней скоростью истечения. Минимальный запас энергии на борту ракеты (характеризуемый, например, массой урана-235) достигается при скорости истечения, равной примерно 62 % от величины характеристической скорости, и числе Циолковского, равным 4. И наоборот, если заданы запас энергии па борту и характеристическая скорость, то данное оптимальное значение скорости истечения соответствует максимально возможному полезному грузу ракеты.

Отсюда следует, что в двигателях с разделенными источниками энергии и отбрасываемой массы скорость истечения не должна превышать оптимальной величины, определяемой конкретной задачей космического полета. Это положение не противоречит сделанному выше утверждению о стремлении к повышению скорости истечения при разработке новых двигателей, так как для большинства задач в существующих схемах двигателей еще не достигнута оптимальная скорость истечения.

В некоторых случаях даже для двигателей, использующих внутреннюю энергию рабочего тела, выгодно снижать скорость истечения за счет добавления пассивной массы. Например, ракета с ЖРД, покидающая Луну, должна сообщить полезному грузу характеристическую скорость около 2,5 км/с. Оптимальная же скорость истечения для выполнения данной задачи — 1,6 км/с (0,62


Еще от автора Александр Сергеевич Дмитриев
Основные вехи творческого пути Генриха Манна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
99 секретов астрономии

В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.