Космические двигатели будущего - [18]

Шрифт
Интервал

Если электрическую энергию преобразовать в лазерное излучение, то лазерный передатчик (на длине волны 10,6 мкм) должен иметь передающую антенну диаметром 31 м, а размеры приемной антенны на Земле — 31 × 40,3 м. Лазерная система может передавать энергию не только на Землю, но и на другие спутники, а также обеспечивать энергией двигательные установки самолетов и космических аппаратов. Если для СВЧ-системы максимально допустимый поток энергии не превышает 23 МВт/см>2, то для лазерной системы, рассчитанной на мощность 500 МВт, максимальный поток лучистой энергии может достигать 185 Вт/см>2 без увеличения потерь на взаимодействие светового пучка с атмосферой.

Одним из возможных вариантов лазерной энергетической системы является запуск ССЭ на низкую околоземную солнечно-синхронную орбиту, последующее преобразование на ее борту солнечной энергии в лазерное излучение, передача последнего на один или два ретрансляционных спутника, находящихся на геостационарной орбите. И наконец, передача с этих спутников лазерного излучения на приемные станции на Земле.

Отметим, что конфигурация энергетической системы с использованием спутников-ретрансляторов возможна только при работе в лазерном диапазоне длин волн. При этом запуск ССЭ на низкую полярную орбиту (а не на стационарную или высокоэллиптическую, как в исходной концепции) позволяет в 6 — 10 раз снизить общую массу грузов, которую необходимо вывести на опорную орбиту для обеспечения создания ССЭ. В целом при использовании ряда перспективных технических решений лазерные энергетические системы вероятно будут обладать серьезными преимуществами перед системами, работающими в СВЧ-диапазоне по массовым характеристикам, по уровню загрязнения окружающей среды и стоимости.

Общий КПД таких систем может достигать 8 — 12 %, что вполне сопоставимо с общим КПД СВЧ-систем. Однако в отличие от СВЧ-систем лазерные системы не являются всепогодными, так как лазерное излучение испытывает сильное поглощение при распространении в облаках и зонах выпадания осадков. Этот вопрос, видимо, может быть решен с помощью создания резервных наземных приемных станций, а также при размещении приемных станций в районах с низкой вероятностью выпадания осадков. При использовании лазерных космических энергостанций в качестве внешнего источника энергии для разгона космических аппаратов и ракет погодные условия могут оказывать влияние только на атмосферном участке траектории.

ДВИГАТЕЛИ С ИСПОЛЬЗОВАНИЕМ ВНЕШНИХ ИСТОЧНИКОВ МАССЫ

Почти во всех рассмотренных ранее двигательных системах масса, от которой отталкивается ракета (отбрасываемая масса), сосредоточена на борту ракеты. Для хранения массы требуются баки и поддерживающая их конструкция, что сильно увеличивает массу ракеты, ограничивает ее стартовую массу и сокращает при данном запасе массы характеристическую- скорость полезного груза. Отсюда, естественно, стремление к использованию в ракетных двигателях внешних масс, подобно тому как это осуществляется в наземном и воздушном транспорте, когда в качестве отбрасываемой массы используется либо сама Земля, либо ее атмосфера.

Проведено много исследований по использованию земной атмосферы для старта ракет с поверхности Земли. При этом ожидался двоякий выигрыш. Во-первых, кислород в воздухе может играть роль окислителя горючего, запасаемого на борту ракеты, что эквивалентно увеличению общего запаса энергии на борту ракеты. Во-вторых, увеличение количества отбрасываемой массы позволит снизить скорость истечения, а, следовательно, на начальном участке траектории полета увеличится тяговый КПД. Кроме того, при заданной мощности двигателя за счет дополнительной отбрасываемой массы можно увеличить тягу и запускать ракеты больших стартовых масс.

Как источник кислорода и дополнительной массы, воздух широко применяется в современных газотурбинных и прямоточных воздушно-реактивных двигателях (ВРД).

Принцип работы ВРД состоит в том, что поступающий в двигатель со скоростью летательного аппарата воздух увеличивает свою скорость за счет выделяемой в двигателе энергии. Разность скоростей воздуха на входе в двигатель и на выходе из него, помноженная на массовый расход воздуха, как раз и равна тяге двигателя. Поскольку при заданном энерговыделении и при прочих равных условиях относительный прирост скорости воздуха будет падать, то с увеличением скорости летательного аппарата будет соответственно уменьшаться тяга ВРД.[5]

Ограничения по скорости полета для двигателей, использующих внешнюю массу, можно существенно снизить, если применять энергию ядерных реакций, подводя ее к воздуху либо непосредственно (как в газофазных реакторах), либо от источника электроэнергии. В первом случае будет происходить вынос радиоактивных продуктов в атмосферу, во втором из-за больших масс бортовой энергоустановки старт с поверхности Земли становится невозможным. Поэтому использование внешней массы в таких двигателях рассматривается лишь в космическом пространстве.

Благодаря низкой плотности вещества в космосе традиционные схемы воздухосборников в виде трубы с раструбом имеют смысл лишь на очень низких орбитах (100–120 км). Для больших высот эффективность воздухозаборника можно значительно увеличить, если снабдить двигатель источником магнитного поля (соленоидом). Межпланетная среда представляет собой ионизированный газ (плазму), причем степень ионизации с удалением от Земли растет, и, начиная с высот 10 000 км, наступает практически полная ионизация.


Еще от автора Александр Сергеевич Дмитриев
Основные вехи творческого пути Генриха Манна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
186 суток на орбите (спросите у космонавта)

Тим Пик увлекается марафонским бегом, альпинизмом и лыжным спортом, воспитывает сына и ходит в спелеологичес кие походы в Западном Суссексе. А еще Тим прошел отбор в программу Европейского космического агентства (EKA). На шесть мест для полетов в открытый космос претендовало более 8000 участников… А сегодня Тим Пик – единственный космонавт во всей Великобритании. 15 декабря 2015 года в 14:03 Тим Пик в должности второго борт инженера отправился с космодрома Байконур к МКС, чтобы провести на орбите 186 суток и узнать все о том, как жить и выживать в космосе. Что чувствовал Тим, вращаясь вокруг Земли быстрее, чем ускоряющаяся пуля? Каково это есть, спать и вообще жить в космосе? Что делать, когда нечего делать? Как вообще обстоят дела в современном космосе? Вернувшись домой, Тим решил поделиться всем пережитым с землянами.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


100 миллиардов солнц: Рождение, жизнь и смерть звезд

Книга астронома из ФРГ посвящена изложению современных взглядов на свойства, строение, происхождение и эволюцию звезд. Не применяя математики и сложной терминологии, автор просто и наглядно объясняет все основные результаты теории звезд, начиная с ее классических разделов и кончая самыми современными данными о пульсарах, рентгеновских звездах и черных дырах.


Пилотируемые полеты на Луну

Выпуск Итоги науки и техники из серии Ракетостроение, том 3, «Пилотируемые полеты на Луну, конструкция и характеристики Saturn V Apollo» является обзором и систематизацией работ, информация о которых опубликована в изданиях ВИНИТИ АН СССР в 1969—1972 гг. В томе 3 описываются конструкция, весовые, летные характеристики и космические летные испытания ракеты-носителя Saturn V и корабля Apollo. Рассматриваются системы управления корабля Apollo, принципы прицеливания траектории полета Земля-Луна-Земля, навигация, коррекция траектории полета, методы аварийного возвращения.