Коллайдер - [6]
Есть у струнной и М-теорий и противники. Они подвергают сомнению физическую состоятельность новых подходов, содержащих неизвестные величины и требующих скрытых измерений. Во множестве всевозможных комбинаций наш реальный мир представлен какой-то частью, которая, в свою очередь, сама включает массу возможностей. Если в теории достаточно много свободных параметров, утверждают оппоненты, ею можно объяснить практически любую частицу или взаимодействие. Это то же самое, как если бы писатель, решивший уподобиться Диккенсу, накропал бы десятки тысяч страниц сомнительной прозы и поручил бы редактору нарезать из них роман английского классика. Перефразировав знаменитое изречение Трумана Капоте «Это машинопись, а не литература», оппоненты теории струн могли бы сказать: «Это подгонка, а не физика».
Но даже самые пылкие сторонники и ярые противники сходятся в одном: судьей любой теории, в конечном итоге, является эксперимент. Правда, до сих пор ни струнная, ни М-теория такой роскошью не располагают. Видный теоретик Брайс Девитт как-то мне сказал: «Я чувствую себя немного виноватым перед студентами которые хотят заниматься М-теорией. Ведь там нет ни капли опытных доказательств ее справедливости»>3.
В период с 30-х до середины 90-х гг. XX в. физика элементарных частиц сильно продвинулась вперед благодаря экспериментам по столкновению частиц высоких энергий на разных типах ускорителей. Ускоритель - это прибор, в котором частицы (скажем, протоны), направляемые электрическими и магнитными полями, летают по кольцу или другой траектории и разгоняются до все больших и больших энергий. Затем они сталкиваются, а их энергия превращается в целый ливень осколков. Как следует из соотношения Эйнштейна, чем больше энергия при столкновении, тем вероятнее рождение тяжелых частиц. В старых ускорителях использовались неподвижные мишени, но физики осознали, что лобовое столкновение позволит выжать гораздо больше энергии. Ускорители, в которых частицы налетают друг на друга лоб в лоб, называются коллайдерами (от англ. collide - «сталкиваться»).
В те переломные десятилетия исследователи, собирая и обрабатывая данные столкновений с помощью разнообразных детекторов, открыли целый «зоопарк» элементарных частиц. Надо было всех их каким-то образом разбить на семейства и понять, как они распадаются и взаимодействуют. И крупные теоретические успехи не заставили себя ждать. Для объяснения данных предлагались свежие теории, которые затем проверялись в новых экспериментах. В итоге, будучи подтвержденными на опыте, некоторые теории переставали быть чисто умозрительными, а физическое сообщество начинало к ним прислушиваться. После проверки они словно восклицали: «А мы что говорили!»
Взять хотя бы элементарный кирпичик под названием топили t-кварк[1]. Предсказанный в 70-х гг., он был обнаружен в 1995 г. при обработке столкновений на тогда самом внушительном ускорителе в мире, «Теватроне» Национальной ускорительной лаборатории им. Ферми («Фермилабе») в Батавии, штат Иллинойс. На «Теватроне», официально запущенном в 1983 г., потоки протонов и антипротонов (отрицательно заряженных частиц, являющихся для протонов антиматерией) разгоняются до энергий около 1 ТэВ (одного тераэлектронвольта) и врезаются друг в друга. Один электронвольт - это энергия, затрачиваемая на перенос одного-единственного электрона или протона между клеммами одновольтовой батарейки. Умножьте эту величину на миллиард, и как раз получится 1 ТэВ - для миниатюрных элементарных частиц энергия колоссальная.
Как впоследствии оказалось, на топ-кварке - последнем крупном открытии на «Теватроне» - череда ярких научных завоеваний в физике высоких энергий прервалась на неопределенно долгое время. Чтобы найти «хиггс», разыскать суперсимме-тричных двойников, а также для решения других важных задач требовались все-таки более серьезные энергии, чем мог предложить этот немаленький прибор. А за отсутствием экспериментальной базы хор конкурирующих между собой теорий разразился режущей слух какофонией. Как вернуть теоретическую физику в хорошее расположение духа, разрешить спор между альтернативными идеями и услышать голос истины? Выход был один - построить более мощные коллайдеры.
Такую ответственность взял на себя Европейский центр ядерных исследований, который по французской аббревиатуре (CERN) называют ЦЕРНом. Найти «хиггс», открыть суперсимметричные частицы, разгадать природу темной материи, понять, есть ли скрытые дополнительные измерения, объяснить, почему во Вселенной больше материи, чем антиматерии, воспроизвести в какой-то степени условия Большого взрыва - имея в виду эти и многие другие насущные научные проблемы, ЦЕРН решил бросить силы на постройку самого большого и самого энергичного ускорителя в мире. В качестве площадки было выбрано место вблизи штаб-квартиры центра, неподалеку от швейцарской Женевы.
Более пятнадцати лет напряженного графика и свыше 8 млрд долларов - такова цена наконец запущенного Большого адронного коллайдера, новаторского научного проекта, призванного раскрыть самые глубокие тайны физики частиц. Без всякого преувеличения, это величайший эксперимент всех времен, высшая ступень в погоне человека за единством. Под стать благородной цели ощутить космическую общность и величие и здешняя живописная местность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.