Коллайдер - [5]

Шрифт
Интервал

= тс >2 (энергия равна массе, помноженной на скорость света в квадрате) тогда следует: полученная энергия - все равно что масса, которая и распределяется между разными элементарными частицами, включая переносчиков слабого взаимодействия. Одним словом, останавливаясь, хиггсовская «рулетка» придает массу частицам, в том числе отвечающим за слабые силы, и последние становятся тяжелее, хотя фотон по-прежнему не имеет массы. За его удивительную способность снабжать массой другие частицы «хиггс» прозвали «божественной частицей».

Если механизм Хиггса верен, от соответствующего поля должна была остаться своя элементарная частица. Из-за ее массы, которая больше чем в сто раз превосходит массу протона, сидящего в ядре водородного атома, ее можно надеяться увидеть только в бурных процессах, какими являются высокоэнергетические столкновения частиц. Но после десятков лет поисков этот ключевой ингредиент электрослабой теории пока так и не найден. Как-то незаметно неуловимая божественная частица превратилась в святой Грааль современной физики.

Если забыть про ненайденный «хиггс», теория электрослабого объединения успешно доказала свое право на существование. Ее значение так велико, что ее даже называют Стандартной моделью. Однако, к большому разочарованию всего физического сообщества, попытки объединить электрослабое взаимодействие с оставшейся парой сил плодов до сих пор не принесли.

Теории электрослабых и сильных взаимодействий удается по крайней мере сформулировать на одном и том же языке - в терминах квантовой механики. Разработанная в 20-х гг. прошлого века, квантовая механика оказалась мощным инструментом для описания природы на субатомных расстояниях. Но хотя она точно предсказывает средние для различных физических процессов, для того же рассеяния (соударения и разлета двух и более частиц) или распада, ее неотъемлемым свойством является неопределенность, с которой трудно свыкнуться. Как бы мы ни пытались докопаться до точного хода физических событий, происходящих на субатомных масштабах, в лучшем случае нам остается бросать монетку или играть в кости. Эйнштейн так и не смог смириться с тем, что приходится делать ставки, хотя, казалось бы, все должно быть кристально ясно и без них. Он провел остаток своей жизни, пытаясь построить взамен новую теорию. Однако квантовая механика, подобно молодому Моцарту, гениальному, но дерзкому, представила на наш суд столько изумительных симфоний, что на ее шалости закрыли глаза.

Физикам, дорожащим точностью, не мог не полюбиться шедевр самого Эйнштейна - общая теория относительности. Она объясняет гравитацию во всех деталях и, в отличие от теорий остальных взаимодействий, дает не вероятностное, а детерминированное описание. Кроме того, в теории Эйнштейна пространство и время оставили свою роль фоновых координат и стали полноправными участниками физических процессов. Ученые не опускают рук, но пока нет общепринятого способа примирить гравитацию и квантовую механику. Это как пытаться настроить на победу команду, отправляющуюся на олимпиаду по лингвистике, и вдруг обнаружить, что один из четырех игроков, признанный эксперт в своей области, говорит на никому не понятном языке.

У ученых куда-то затерялся один из элементов мозаики. Из четырех фундаментальных взаимодействий два, слабое и электромагнетизм, явно подходят друг к другу. Сильное взаимодействие тоже не выглядит третьим лишним, но еще никто до конца не знает, с какой стороны его пристроить. А вот гравитация будто попала сюда совсем из другой коробки. Как же нам воссоздать первоначальную симметрию Космоса?

Современной физике известны и другие случаи асимметрии. Так, например, разница в количестве материи и антиматерии (она напоминает материю, но противоположно заряжена) - первой во Вселенной намного больше. Или существенные различия в поведении фермионов (из них состоит материя) и бозонов (они переносят взаимодействия). Как Монтекки и Капулетти, фермионы и бозоны принадлежат к разным семьям со своим набором традиций. Собираясь вместе, они ведут себя по-разному: фермионам всегда нужно больше места. Попытки примирить два семейства привели к гипотезе великого вселенского союза под названием суперсимметрия. Она требует, чтобы у каждого члена одной семьи был родственник в другой. Эти суперсимметричные пары, возможно, помогут решить одну из главных астрономических головоломок: почему галактики двигаются так, будто в них больше массы, чем нам кажется? Может быть, вся или почти вся темная материя состоит из этих самых суперсимметричных частиц? В любом случае, их никто никогда не видел, и ученым еще предстоит их найти.

Такие нестыковки и парадоксы раззадоривают человеческий ум. Нам хочется услышать от науки полноценный рассказ, а не прерываться на самом интересном месте. Если нам по-прежнему не ясно, чем все закончится, наверное, стоит подключить фантазию, хотя вот физикам-теоретикам на фантазию жаловаться не приходится. За любой научной загадкой увивается целый рой возможных объяснений, правдоподобных и не очень.

Особенно поражают воображение сравнительно недавние теоретические изыскания, в которых предлагается заменить элементарные частицы вибрирующими энергетическими нитями или мембранами. Первыми занимается теория струн, а вторыми - М-теория. Привлекая суперсимметрию или дополнительные измерения вдобавок к обычным пространству и времени, в рамках этих схем теоретики дают красивое объяснение некоторым различиям между гравитацией и остальными взаимодействиями. Новые теории удобнее с математической точки зрения: раньше некоторые вычисления, если их провести в отношении точечных частиц, давали бессмысленный результат, а со струнами и мембранами конечных размеров эти проблемы исчезают. Общеизвестно, какие большие трудности возникают при попытках расширить Стандартную модель и таким образом построить теорию всех взаимодействий. Поэтому неудивительно, что многих выдающихся ученых привлекла математическая элегантность новаторских теорий. Вайнберг, например, однажды заметил: «Кроме струн нам положиться не на что»


Еще от автора Пол Хэлперн
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.