Коллайдер - [48]

Шрифт
Интервал

Другие детекторы, широко применяемые в физике высоких энергий, - это сцинтилляционные счетчики, фотоумножители, черенковские детекторы, калориметры, искровые и дрейфовые камеры. Одним прибором не обойтись, нужен целый спектр измерительных приборов. Все потому, что главная задача эксперимента - за короткое время собрать как можно больше информации. Многие частицы, едва родившись, тут же оканчивают свою короткую жизнь и распадаются. Иногда единственное, что говорит о произошедшем событии, - это дисбаланс энергии, импульса или других сохраняющихся величин. Как полицейские на месте преступления, физики, чтобы вычислить подозреваемых, вынуждены оцеплять район столкновения, напичкав его всевозможной измерительной аппаратурой, и, не теряя времени, собирать улики. Только тогда можно надеяться определить последовательность событий и воссоздать полную картину взаимодействия.

Любимый метод Резерфорда, засекавшего частицы по вспышкам на флуоресцентном экране, получил логическое продолжение в сцинтилляционных счетчиках. Пролетая через детектор, частица возбуждает электроны в атомах, которые затем излучают полученную энергию в виде света. Для этой цели хорошо подходят люминесцентные пластмассы с жидким фторсодержащим наполнителем. Фотоумножитель - это электронный прибор, способный усиливать тусклый свет (идущий, например, от сцинтиллятора) до такой степени, чтобы его можно было различить.

Принцип работы черенковского детектора зиждется на так называемом эффекте Вавилова-Черенкова. Его в 1934 г. экспериментально обнаружил работавший под руководством С.И. Вавилова П.А. Черенков из Физического института им. П.Н. Лебедева в Москве. Дело в том, что если частица движется в некотором веществе со скоростью, превышающей скорость света, она начинает излучать. Нельзя превзойти скорость света в вакууме, но в веществе свет замедляется, и тогда его удается обогнать. Известно, что, оказавшись рядом с реактивным самолетом, который разогнался до скорости звука, мы слышим громкий хлопок (нас настигает фронт звуковой ударной волны). Так и частицы, бегущие в веществе наперегонки со светом, испускают в устремленный вперед конус излучение, получившее название черенковского. На наше счастье, угол раствора конуса напрямую зависит от скорости частицы, позволяя экспериментально измерить этот важный параметр.

Следующий класс приборов - калориметры, с помощью которых ученые измеряют энергию частиц. В заполняющем их плотном материале возбуждаются распадные ливни, представляющие собой цепочку рождений пар и образования тормозного излучения (излучение, испускаемое замедляющимися частицами), в результате чего высвобождаются большие залежи энергии. Если получается зарегистрировать хотя бы определенную долю этой энергии, физики могут делать выводы о том, насколько энергичным было первоначальное событие. В электромагнитных калориметрах делается упор на каскады, вызываемые электромагнитными силами, а в адронных калориметрах орудуют сильные взаимодействия.

Адроны - это частицы, подверженные влиянию ядерных сил. К ним относятся протоны, нейтроны, различные типы мезонов и ряд более тяжелых частиц. Все они состоят из кварков. Лептоны же - это частицы, нечувствительные к сильному взаимодействию: электроны, позитроны, мюоны и нейтрино. В них нет кварков - это уже истинно элементарные частицы. Адронные калориметры не реагируют на лептоны, они ощущают только энергию адронов.

Помимо пузырьковых камер существует множество других приборов для измерения траекторий частиц. Для регистрации заряженных частиц хорошо подходят искровые камеры. Промелькнувшая частица вдоль своего пути ионизует газ, и в нем происходит напоминающий молнию разряд. Дрейфовые камеры устроены сложнее: для того чтобы измерить время пролета частицы между двумя заданными точками, в них используется электроника.

С изобретением компьютера физика высоких энергий обрела незаменимого помощника. Теперь ученые могли себе позволить прочесывать гигантские объемы данных в поисках намеков на интересные события. О том, чтобы без компьютера найти продукты редких распадов, можно было бы и не мечтать. Все равно что искать в лесу цветущий папоротник.

Ко времени вступления «Фермилаба» в строй в начале 70-х одна из особенностей его конструкции уже успела устареть. Еще со времен Резерфорда пучки в ускорителях били по неподвижным мишеням. А как диктуют законы сохранения, в таком случае львиную долю полной энергии столкновения уносят вторичные частицы, вылетающие с обратной стороны мишени. Лишь малая толика может быть обращена в массу новых частиц. Более того, выход полезной энергии в столкновениях с неподвижной мишенью растет довольно медленно - пропорционально корню из энергии пучка. Скажем, если в улучшенной модели ускорителя в протонах запасается в сто раз больше энергии, эффективная энергия получит только десятикратное приращение. Вдобавок к этому недостатку сам рождающийся пучок оказывался узким, усложняя экспериментаторам задачу регистрации испущенных частиц.

В далеком 1953 г. Видероэ словно предвидел эту проблему и запатентовал гораздо более совершенную разновидность ускорителя, который мы сегодня называем коллайдером


Еще от автора Пол Хэлперн
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.


Как произошла жизнь на Земле

Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.