Когда прямые искривляются. Неевклидовы геометрии - [34]

Шрифт
Интервал

Для наблюдателей, улетающих от Земли со скоростью, близкой к скорости света, пространственные и временные составляющие интервала будут совершенно разными. Один наблюдатель может решить, что два события разделяют 200 лет, в то время как другой может сделать вывод, что они происходят одновременно. Их восприятие пространственных и временных составляющих может сильно отличаться от нашего. Геометрия пространства-времени оказывается странной. В четырехмерном пространстве расстояние между двумя точками (интервал между двумя событиями) является неизменным, в то время как две составляющие могут быть совершенно различны.

Через три года после того, как Эйнштейн опубликовал свою первую статью на эту тему, Герман Минковский упростил его теорию, предложив геометрическую интерпретацию, обосновывающую странные вычисления Эйнштейна. Конечно, геометрия Минковского была неевклидовой. Минковский использовал одну из самых важных идей Римана о том, что математическое пространство определяется способом измерения расстояний. Другими словами, формула расстояния определяет тип геометрии.




Ось представляет собой время, а ось х — пространство. Оси под прямым углом (х, t) соответствуют системе в состоянии покоя, в то время как оси с острым углом между ними (х't') — движущейся системе. Движущаяся система склоняется к лучу света. В неподвижной системе наблюдатель видит, что события А и В происходят одновременно, а в движущейся системе наблюдатель решит, что событие В произошло раньше А.


Если два события имеют координаты

(x>1, у>1, z>1, t>1) и (x>2, у>2, z>2, t>2)

расстояние I между ними в геометрии Минковского вычисляется по формуле


где с — скорость света.

С другой стороны, если бы эти две точки были в четырехмерном евклидовом пространстве, расстояние между ними считалось бы по формуле:



Эта вторая формула является обобщением теоремы Пифагора из евклидовой геометрии на плоскости, в то время как первая формула со знаками минус в евклидовой геометрии не встречается.


Общая теория относительности

Через десять лет после публикации специальной теории относительности Эйнштейн сформулировал общую теорию относительности, которая снова потрясла научный мир. Одной из его революционных идей была мысль о том, что наше пространство искривлено. Другими словами, лучи света, которые всегда выбирают кратчайший маршрут, не распространяются по прямой линии, а изгибаются, что является кратчайшим расстоянием в искривленном пространстве. Лучи света изгибаются в разной степени в зависимости от области пространства: в сильном гравитационном поле они искривлены сильнее.

Это явление было экспериментально доказано в 1919 г. во время полного солнечного затмения. Во время затмения лучи света от далекой звезды, проходящие очень близко от Солнца, могут быть подробно изучены. Эйнштейн оказался прав, лучи были искривлены. Было также доказано, что прогнозы гения оказались очень близки к расчетам, сделанным на основе реальных данных, собранных в ходе наблюдения. Прямые линии в геометрии общей теории относительности отличаются от евклидовых прямых.

Какую из геометрий, рассмотренных в этой книге, использовал Эйнштейн? Как всегда в мире неевклидовых геометрий, простого ответа нет. Во-первых, понятие искривленного пространства берется из эллиптической геометрии, в которой прямые линии во Вселенной замкнуты. Во-вторых, Эйнштейн использовал вариант геометрии Минковского, в которой формула для расстояния учитывает физические условия в разных точках Вселенной в зависимости от силы гравитационного поля. Альберт Эйнштейн отметил роль неевклидовых геометрий в своей знаменитой лекции в 1921 г.:

«Я не могу не отдать должное всем альтернативным геометриям. Если бы я не знал их, я бы не смог развить теорию относительности».


Относительность материи и пространства

Возможно, Эйнштейн не открыл бы теории относительности, если бы не важнейший эксперимент, проведенный в 1880 г. Альбертом Майкельсоном (1852–1931) и Эдвардом Морли (1838–1923). Эти два физика попытались определить наличие вещества, называемого «эфиром», через которое, как считалось, распространяется свет и электромагнитное излучение. Звуковые волны не распространяются в вакууме, им необходима среда, воздух или вода, которая также позволяет измерить скорость звука. Таким образом, в XIX веке считалось, что световые волны распространяются не в космическом вакууме, а им также нужна среда, которая еще не открыта.

В эксперименте измерялось время, за которое луч света достигал зеркала и отражался от него. Сначала движение светового луча совпадало с направлением вращения Земли, так что когда луч летел к зеркалу, скорость планеты добавлялась к скорости света в эфире, а на его обратном пути вычиталась, что позволяло измерить скорость света в эфире. Затем световой луч пускался перпендикулярно вращению Земли, так что скорость вращения планеты не влияла на скорость света в эфире.

Таким образом, в эксперименте вращение Земли учитывалось или исключалось.

Представьте себе подобную ситуацию. Мы стоим на берегу реки шириной d и хотим провести следующий эксперимент. Вместо того чтобы посылать луч света, мы переплывем реку туда и обратно. Пусть с будет наша скорость, которая соответствует скорости света, a


Еще от автора Жуан Гомес
Математики, шпионы и хакеры. Кодирование и криптография

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.