Когда прямые искривляются. Неевклидовы геометрии - [11]

Шрифт
Интервал

* * *

2. Гипотеза о тупых углах: углы В и С являются тупыми, то есть их величина больше 90° и меньше 180°.



3. Гипотеза об острых углах: углы В и С являются острыми, то есть их величина больше 0° и меньше 90°.



Саккери показал, что пятый постулат эквивалентен гипотезе о прямых углах, а затем попытался доказать, что другие гипотезы приводят к противоречию. Если бы ему это удалось, то постулат был бы доказан. Рассматривая вторую гипотезу (случай тупых углов), он получил противоречие и отбросил эту возможность. Еще раньше он показал, что сумма четырех углов должна быть меньше или равна 360°. Но для гипотезы острых углов ему не удалось получить противоречия. Теперь-то мы точно знаем, что противоречия не существует, и гипотеза об острых углах является одной из основ неевклидовой геометрии. Спустя столетие Ламберт, о котором мы подробнее расскажем позже, также безуспешно попытался доказать постулат исходя из того, что углы А, В и D являются прямыми.

Исходя из гипотезы об острых углах, Саккери получил различные результаты неевклидовой геометрии. Например, он показал, что гипотезы о прямых, тупых и острых углах эквивалентны тому, что сумма внутренних углов треугольника равна, больше или меньше двух прямых углов соответственно. Он также доказал некоторые результаты, необычные для евклидовой геометрии. Вот один из них.

Пусть точка Р находится вне прямой линии l. Если мы рассмотрим все прямые, проходящие через Р, то увидим, что существуют две предельные прямые (в математических терминах они называются «асимптотическими»), обозначенные на рисунке буквами m и n. Они делят пучок всех прямых на две части, в одной из которых находятся все прямые линии, которые пересекают прямую l (например, пунктирная прямая s), а в другой — все прямые, которые не пересекают (например, пунктирная прямая l).



Геометрия, построенная на гипотезе об острых углах и тем самым отрицающая пятый постулат, в наше время известна как гиперболическая.

На следующем рисунке показано, как в гиперболической геометрии выглядит предыдущий рисунок. Теперь прямые линии тип изображены в виде кривых не потому, что они действительно такие, а для того чтобы не возникло путаницы с евклидовой ситуацией. На таком рисунке хорошо видно, что представляют собой асимптотические прямые шип.

Представление прямых линий кривыми очень полезно для понимания и изучения гиперболической геометрии, каким бы нелогичным это ни казалось в евклидовом смысле.



Работа Саккери содержит первые результаты этой новой геометрии. Достижение итальянского математика поразительно, но, к сожалению, ему не хватило смелости. Осознавая странность своих выводов, он пишет в предложении XXXIII своего трактата: «Гипотеза об острых углах является абсолютно ложной, поскольку противоречит самому понятию прямой линии». Казалось, что задача о параллельных прямых останется нерешенной еще многие годы.


На пути к неевклидовой геометрии

В XVIII в., в эпоху Просвещения, была посмертно издана книга швейцарского математика Иоганна Генриха Ламберта (1728–1777) под названием «Теория параллельных». В ней Ламберт выразил сомнение, что пятый постулат может быть выведен из других, и предположил, что, возможно, необходимы некоторые дополнительные гипотезы.

Саккери и Ламберт так и не нашли неопровержимого доказательства того, что пятый постулат невозможно доказать. Последующие попытки доказательства всегда возвращались к исходной точке, лишь порождая новые запутанные понятия. Как мы уже говорили, проблема заключалась в том, что все доказательства неявно использовали результат, который нужно было доказать.

Математическое сообщество убедилось, что постулат о параллельных прямых является настоящим постулатом, а не теоремой, и поэтому не требует доказательства. С другой стороны, хотя все попытки доказательства потерпели неудачу, получаемые результаты не содержали противоречий. Попытки доказать пятый постулат Евклида приводили математиков к понятиям неевклидовой геометрии.

* * *

ЧЕТЫРЕХУГОЛЬНИК ЛАМБЕРТА

Ламберт составил список нескольких утверждений, которые должны быть доказаны, среди них — и пятый постулат. В последней главе своей книги он рассматривал четырехугольники с тремя прямыми углами (А, В и D).

Для четвертого угла снова было три возможности. Четырехугольником Ламберта называют такой четырехугольник ABCD, у которого углы А, В и D прямые, а угол С не равен 90°.



Глава 4

Становление неевклидовой геометрии

Самой первой неевклидовой геометрией была гиперболическая геометрия, которая возникла путем замены пятого постулата Евклида следующим утверждением:

«Через точку Р вне данной прямой проходит более одной прямой, параллельной данной».

Этим утверждением Лобачевский и Бойяи решили проблему постулата о параллельных прямых, и поэтому они являются основоположниками первой неевклидовой геометрии. Они оба считаются авторами гиперболической геометрии, хотя они даже не слышали друг о друге и совершили открытие независимо друг от друга.

Тому было несколько причин. Лобачевский писал только на русском языке, и его работы стали широко известны лишь через много лет после его смерти. Однако в настоящее время гиперболическая геометрия чаще всего ассоциируется именно с ним, а не с Бойяи, его коллегой из Венгрии.


Еще от автора Жуан Гомес
Математики, шпионы и хакеры. Кодирование и криптография

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.